Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

Forests have climate change mitigation potential since they sequester carbon. However, their carbon sink strength might depend on management. As a result of the balance between CO2 uptake and emission, forest net ecosystem exchange (NEE) reaches optimal values (maximum sink strength) at young stand ages, followed by a gradual NEE decline over many years. Traditionally, this peak of NEE is believed to be concurrent with the peak of primary production (e.g., gross primary production, GPP); however, in theory, this concurrence may potentially vary depending on tree species, site conditions and the patterns of ecosystem respiration (Reco). In this study, we used eddy-covariance (EC)-based CO2 flux measurements from 8 forest sites that are dominated by Norway spruce (Picea abies L.) and built machine learning models to find the optimal age of ecosystem productivity and that of CO2 sequestration. We found that the net CO2 uptake of Norway spruce forests peaked at ages of 30-40 yrs. Surprisingly, this NEE peak did not overlap with the peak of GPP, which appeared later at ages of 60-90 yrs. The mismatch between NEE and GPP was a result of the Reco increase that lagged behind the GPP increase associated with the tree growth at early age. Moreover, we also found that newly planted Norway spruce stands had a high probability (up to 90%) of being a C source in the first year, while, at an age as young as 5 yrs, they were likely to be a sink already. Further, using common climate change scenarios, our model results suggest that net CO2 uptake of Norway spruce forests will increase under the future climate with young stands in the high latitude areas being more beneficial. Overall, the results suggest that forest management practices should consider NEE and forest productivity separately and harvests should be performed only after the optimal ages of both the CO2 sequestration and productivity to gain full ecological and economic benefits. How to cite: Zhao, J., Lange, H., and Meissner, H.: Mismatch between the optimal ages for ecosystem productivity and net CO2 sequestration in Norway spruce forests, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-4257, https://doi.org/10.5194/egusphere-egu21-4257, 2021.

To document

Abstract

The demand for animal protein has increased considerably worldwide, especially in China, where large numbers of livestock and poultry are produced. Antibiotics have been widely applied to promote growth and prevent diseases. However, the overuse of antibiotics in animal feed has caused serious environmental and health risks, especially the wide spread of antimicrobial resistance (AMR), which seriously affects animal and human health, food safety, ecosystems, and the sustainable future development of animal protein production. Unfortunately, AMR has already become a worldwide challenge, so international cooperation is becoming more important for combatting it. China’s efforts and determination to restrict antibiotic usage through law enforcement and effective management are of significance. In this review, we address the pollution problems of antibiotics; in particular, the AMR in water, soil, and plants caused by livestock and poultry manure in China. The negative impact of widespread and intensive use of antibiotics in livestock production is discussed. To reduce and mitigate AMR problems, we emphasize in this review the development of antibiotic substitutes for the era of antibiotic prohibition.

Abstract

No abstract has been registered

Abstract

Background Bioenergy plays a key role in the transition to a sustainable economy in Europe, but its own sustainability is being questioned. We study the experiences of Sweden, Finland, Denmark and Norway, to find out whether the forest-based bioenergy chains developed in the four countries have led to unsustainable outcomes and how the countries manage the sustainability risks. Data were collected from a diversity of sources including interviews, statistical databases, the scientific literature, government planning documents and legislation. Results Sustainability risks of deforestation, degradation of forests, reduced carbon pools in forests, expensive biopower and heat, resource competition, and lack of acceptance at the local level are considered. The experience of the four countries shows that the sustainability risks can to a high degree be managed with voluntary measures without resorting to prescriptive measures. It is possible to add to the carbon pools of forests along with higher harvest volumes if the risks are well managed. There is, however, a marginal trade-off between harvest volume and carbon pools. Economic sustainability risks may be more challenging than ecological risks because the competitiveness order of renewable energy technologies has been reversed in the last decade. The risk of resource competition harming other sectors in the economy was found to be small and manageable but requires continuous monitoring. Local communities acting as bioenergy communities have been agents of change behind the most expansive bioenergy chains. A fear of non-local actors reaping the economic gains involved in bioenergy chains was found to be one of the risks to the trust and acceptance necessary for local communities to act as bioenergy communities. Conclusions The Nordic experience shows that it has been possible to manage the sustainability risks examined in this paper to an extent avoiding unsustainable outcomes. Sustainability risks have been managed by developing an institutional framework involving laws, regulations, standards and community commitments. Particularly on the local level, bioenergy chains should be developed with stakeholder involvement in development and use, in order to safeguard the legitimacy of bioenergy development and reconcile tensions between the global quest for a climate neutral economy and the local quest for an economically viable community. Keywords: Bioenergy, Sustainability, Risk assessment, Risk management, Nordic countries

To document

Abstract

The use of biomass from forest harvesting residues or stumps for bioenergy has been increasing in the northern European region in the last decade. The present analysis is a regional review from Nordic and UK coniferous forests, focusing on the effects of whole-tree harvesting (WTH) or whole-tree thinning (WTT) and of WTH followed by stump removal (WTH + S) on the forest floor and mineral soil, and includes a wider array of chemistry data than other existing meta-analyses. All intensified treaments led to significant decreases of soil organic carbon (SOC) stock and total N stock in the forest floor (FF), but relative responses compared with stem-only harvesting were less consistent in the topsoil (TS) and no effects were detected in the subsoil (SS). Exchangeable P was reduced in the FF and TS both after WTT and WTH, but significant changes in exchangeable Ca, K, Mg and Zn depended on soil layer and treatment. WTH significantly lowered pH and base saturation (BS) in the FF, but without apparent changes in cation exchange capacity (CEC). The only significant WTH-effects in the SS were reductions in CEC and BS. Spruce- and pine-dominated stands had comparable negative relative responses in the FF for most elements measured except Mg and for pH. Relative responses to intensified harvesting scaled positively with growing season temperature and precipitation for most variables, most strongly in FF, less in the TS, but almost never in the SS, but were negative for P and Al. The greater reduction in FF and TS for soil organic carbon after intensive harvesting decreased with time and meta-regression models predicted an average duration of 20–30 years, while many other chemical parameters generally showed linear effects for 30–45 years after intensified harvesting. Exchangeable acidity (EA), BS and pH all showed the reversed effect with time, i.e. an initial increase and then gradual decrease over 24–45 years. The subsoil never showed a significant temporal effect. Our results generally support greater reductions in nutrient concentrations, SOC and total N in forest soil after WTH compared with SOH in northern temperate and boreal forest ecosystems.