Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

No abstract has been registered

To document

Abstract

Leys are an important part of northern European livestock production, particularly for ruminants since monogastric animals are limited in their ability to digest the fibres of the forage. Crop fractionation methods are a promising option to make forages more beneficial for monogastric animals and decrease the amount of imported protein feed. A leaf stripping harvesting technique was evaluated at Röbäcksdalen in northern Sweden in mixed grass-clover leys over 2 years. The PremAlfa Mini leaf stripper (Trust'ing-Alf'ing, Nantes, France) worked well in mixed stands, harvesting on average a third of the available forage biomass, primarily in the form of leaves and soft stems from the clover plants. It proved successful in producing a forage fraction that had a significantly higher crude protein (CP) concentration (+39.1%) and lower neutral detergent fibre (aNDFom) concentration (−21.4%) than the pre-harvest mixed sward (all significant at p < .05 level). Due to the remaining high level of aNDFom in the leaf stripper fraction, it is more suited for use as an energy source for monogastrics rather than as a protein supplement. Alternatively, the leaf stripper fraction could be used to increase digestibility and CP content in the feed rations of high producing dairy cows.

To document

Abstract

Manure management is a significant source of methane (CH4) and ammonia (NH3), and there is an urgent need for strategies to reduce these emissions. More frequent export of manure for outside storage can lower gaseous emissions from housing facilities, but the longer residence time may then increase emissions during outside storage. This study examined CH4 and NH3 emissions from liquid pig manure (pig slurry) removed from the in-house slurry collection pits at three different frequencies, i.e., three times per week (T2.3), once per week (T7), or once after 40 days (T40, reference). The slurry from treatments T2.3 and T7 was transferred for outside storage weekly over four weeks, and slurry from treatment T40 once after 40 days, in connection with summer and winter production cycles with growing-finishing pigs. The slurry was stored in pilot-scale storage tanks with solid cover and continuous ventilation. Compared to T40, the treatments T2.3 and T7 increased CH4 emissions during outside storage, but in-house emissions were reduced even more, and the net effects on total CH4 emissions from manure management (housing unit and outside storage) were reductions of 18–41% in summer and 53–83% in winter. The frequent slurry export for outside storage led to more NH3 emissions, except for the treatment T2.3, which has slurry funnel inserts beneath the slatted floor. Measurements of in-vitro CH4 production rates suggested that shorter residence time for slurry in pig houses delayed the development of active methanogenic populations, and that this contributed to the reduction of CH4 emissions.

Abstract

This is the story of the local Norwegian cattle breeds that no longer are categorized as critically endangered. A pedigree database adjusted to the breeds’ needs and close cooperation between farmers, breeding organisations and public authorities are key elements in this success story.

To document

Abstract

In the anaerobic digestion (AD) process, the effects of humic acid (HA) derived from different feedstocks on AD are influenced by the variations in their structural composition and oxygen-containing functional groups. Thus, clarifying the structural differences of HA obtained from different feedstocks is crucial for understanding their impact on AD. In this study, the structure of five humic acids (HAs) derived from liquid digestate, food waste, silage corn straw, lignite and commercial HA, and their effects on AD were investigated. The study found that HA from food waste had more carboxyl groups, while straw-derived HA had more phenolic hydroxyl groups. Both types of HA had higher aromaticity and humification degree and showed significant inhibition effect on AD. HA from food waste had an average methanogenic inhibition rate of 43.5 % with 1 g/L HA added. In addition, commercial HA and HA derived from lignite had similar functional group types and aromaticity, with an average methanogenic inhibition rate of about 20 %. The study revealed that HAs with more carboxyl groups exhibited greater effectiveness in inhibiting AD, thereby confirming the influence of HA structures derived from different feedstocks on AD. In conclusion, this study provides valuable insights into the mechanism of HA effect on AD and offers guidance for future research focused on enhancing AD efficiency.