Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2018
Sammendrag
No abstract has been registered
Sammendrag
The Baltic region includes in this report Fennoscandia (Norway, Sweden, Finland, Denmark), the Baltic states (Estonia, Latvia, Lithuania) and Poland. This region is fairly heterogeneous as regards forest history, forest policy, forest economy as well as climate and conditions for forest growth. The climate of the Baltic region is cool, but still drastically modified by the Gulfstream which skirts the western coast of Scandinavia, giving rise to much warmer summers and milder winters than expected based on the latitude. The warming associated with climate change is expected to be particularly pronounced in winter and at high latitudes. In coastal areas precipitation may increase notably. With elevated temperature, the frequency of both spring frost and drought events is predicted to increase in continental parts. The vegetation and forest types are heterogeneous. Fennoscandia has a large proportion of boreal vegetation where coniferous forests dominate and many broadleaves common in Central Europe are rare and scattered. In the Baltic region the most distinct marginal populations are those at the northern fringe of their distribution. The distribution ranges are limited by a combination of different factors such as low winter temperatures, short growing season either for growth or for seed maturation, soil types and human influence. Fragmentation may limit gene flow between stands, and some populations also show slight inbreeding. The countries in the region have protected jointly 4,9 M ha in the main MCPFE categories. The northern part of the region seems to put more weight on nature conservation through no intervention whereas the southern part emphasizes conservation through active management. The countries of the Baltic region have uploaded altogether 1'172 in situ genetic conservation units in the European Information System on Forest Genetic Resources (EUFGIS).
Forfattere
Kari SkjånesSammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Forfattere
Alexandre Foito Derek StewartSammendrag
Plants and crops contain a staggering diversity of compounds, many of which have pharmacological activity towards a variety of diseases. These properties have been exploited by traditional and modern medicine providing important sources of healthcare to this day. The contribution of natural products (such as plant-derived) to the modern pharmacopeia is indeed significant; however, the process of identifying novel bioactive compounds from biological sources has been a central challenge in the discovery of natural products. The resolution of these challenges relied extensively on the use of hyphenated Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR)-based analytical technologies for the structural elucidation and annotation of novel compounds. Technical developments in instrumentation and data processing have fostered the development of the field of metabolomics which provides a wealth of tools with the huge potential for application in the process of drug/bioactive discovery from plant tissues. This manuscript provides an overview of the metabolomics toolbox available for the discovery of novel bioactive compounds and the integration of these tools in the bioprospection and drug discovery workflows.
Forfattere
Henning Horn Janka Dibdiakova RS Aanerød A Vestlund Kim Harry EsbensenSammendrag
No abstract has been registered
Forfattere
Eveliina Kallioniemi Knut HovstadSammendrag
No abstract has been registered
Sammendrag
Fusarium head blight and seedling blight, both caused by Fusarium spp. and Microdochium spp., and glume blotch caused by Parastagonospora nodorum, are important diseases in wheat. In Norway, wheat seed lots are routinely analysed for infestation by these pathogens using traditional methods (plating grain on PDA, recording presence or absence of fungal colonies). This method is time consuming, require knowledge within fungal morphology, and do not facilitate identification to species in all cases. Molecular methods such as quantitative PCR (qPCR) could allow detection and quantification of fungal DNA at the species level in a relatively time effective way, particularly since the method allows for automation in different steps such as DNA extraction and pipetting. Whether the latter method is suitable within seed health evaluations will depend on the relationship between the amount of DNA of the different fungal species and field performance, and the purpose of the test (evaluation of planting value, need for seed treatment, survey of fungal species, quality of grain for consumption etc). To compare the two different methods, about 150 spring wheat seed lots from the years 2016-2017 (including two cultivars) were selected for the analysis of different fungi using species-specific qPCR and compared with the results from routine testing on PDA. In the 2016 material (81 samples), a mean seed infestation rate of 26% was observed for Microdochium spp. in the PDA test. The level of Fusarium was lower (mean infestation rate of 5%). A strong relationship was observed between the percentage of seeds infested by Microdochium and the level of Microdochium DNA (sum of DNA from Microdochium majus and Microdochium nivale) quantified by qPCR (R2 of 0.76, p<0.01). The relationship between Fusarium infested seeds and the level of Fusarium DNA (sum of DNA from three species) was moderate (R2 of 0.33, p<0.01). The samples were also analysed for the presence of P. nodorum. Compared to Fusarium and Microdochium, P. nodorum was present at an intermediate level (mean infestation rate of 12%). The relationship between the two different methods was weaker for this fungus (R2 of 0.21, p<0.01) than for Fusarium and Microdochium. The relationship between germination capacity and rating of the three groups of fungi by either method was studied. Preliminary results suggest that of the three fungi, Microdochium was associated with germination capacity in the 2016 material, and that the Microdochium infestation rate on PDA was slightly better correlated to germination capacity than the level of Microdochium DNA. Further results will be presented at the conference, including the association between the relative DNA content of the different Microdochium and Fusarium species and seed germination.
Poster – Microalgae: Active ingredients in brewing
Giorgia Carnovale, Kari Skjånes, Stig A. Borgvang
Sammendrag
No abstract has been registered