Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2007
Abstract
We present results from early tests and field trials of offspring from two Norway spruce (Picea abies (L.) Karst.) seed orchards containing clones that have been transferred from high altitudes to sea level and from northern to southern latitudes. Seedlings from seeds produced in the low-altitude seed orchard developed frost hardiness later at the end of the growth season, flushed later in field trials, and grew taller than seedlings from seeds produced in natural stands. They had the lowest mortality rate and the lowest frequency of injuries in the field trials. Similar results were observed in seedlings from seeds produced in the southern seed orchard. We found no adverse effects of the changed growth rhythm. Seedlings from two seed crops in the southern orchard, produced in years with a warm and a cold summer, had different annual growth rhythms. The results are explained mainly by the effects of the climatic conditions during the reproductive phase. Seed crops from different years in the same seed orchard may produce seedlings that perform as if they were from different provenances. It is argued that the effects of the climatic conditions during seed production must contribute to the variation among provenances of Norway spruce.
Abstract
Forest stands are the basic planning units of managed forest landscapes, and the structural composition of these units is important for conservation of biodiversity. We present a methodological approach for identification and mapping of important structural and environmental features of forest stands. Based on an analysis of habitats of red-listed species and a synthesis of results from research on spatial distribution of forest species, we developed a habitat inventory approach (Complementary Hotspot Inventory, CHI) that is currently used in forestry planning in Norway. The CHI maps fine-scale hotspots for 12 habitat types that are further classified according to positions along main environmental gradients (productivity and humidity). Consisting of different substrates in different environments, these habitats to a large degree support different species assemblages. By incorporating both the hotspot and the complementary approach, the CHI produces data tuned for later conservation measures. The high spatial resolution of data facilitates the use of conservation measures at different spatial scales, from single-tree retention to forest reserves. Avalidation test of habitats identified by CHI showed that the density of red-listed species was four times that of randomly selected old forests.
Authors
Stig Strandli Gezelius Karen RefsgaardAbstract
No abstract has been registered
Authors
EI Vanguelova Y Hirano Toril Drabløs Eldhuset L Sas-Paszt M Bakker Ü Püttsepp Ivano Brunner K Lõmus DL GodboldAbstract
No abstract has been registered
Authors
Toril Drabløs Eldhuset Berit Swensen Torild Wickstrøm Gro WollebækAbstract
We conclude that the oxalate exuded constitutively by Picea abies / Laccaria bicolor may lead to rhizosphere oxalate concentrations that are relevant for Al resistance.
Authors
Lena Finér Helja-Sisko Helmisaari Krista Lohmus Hooshang Majdi Ivano Brunner Isabella Børja Toril Drabløs Eldhuset Douglas L. Godbold Tine Grebenc Bohdan Konôpka Hojka Kraigher Merja Möttönen Mizue Ohashi J Oleksyn Ivika Ostonen V Uri Elena VanguelovaAbstract
Fine roots (2 mm) are very dynamic and play a key role in forest ecosystem carbon and nutrient cycling and accumulation. We reviewed root biomass data of three main European tree species European beech, (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.), in order to identify the differences between species, and within and between vegetation zones, and to show the relationships between root biomass and the climatic, site and stand factors.The collected literature consisted of data from 36 beech, 71 spruce and 43 pine stands. The mean fine root biomass of beech was 389 g m-2, and that of spruce and pine 297 g m-2 and 277 g m-2, respectively. Data from pine stands supported the hypothesis that root biomass is higher in the temperate than in the boreal zone.The results indicated that the root biomass of deciduous trees is higher than that of conifers. The correlations between root biomass and site fertility characteristics seemed to be species specific. There was no correlation between soil acidity and root biomass. Beech fine root biomass decreased with stand age whereas pine root biomass increased with stand age. Fine root biomass at tree level correlated better than stand level root biomass with stand characteristics. The results showed that there exists a strong relationship between the fine root biomass and the above-ground biomass.
Abstract
No abstract has been registered
Authors
Pavel Cudlin Barbara Kielisziewska - Rokicka Maria Rudawska Tine Grebenc O Alberton Tarja Lehto Mark R. Bakker Isabella Børja Bohdan Konôpka T Leski Hojka Kraigher Thomas W. KuyperAbstract
Human-induced and natural stress factors can affect fine roots and ectomycorrhizas. Therefore they have potential utility as indicators of environmental change. We evaluated, through meta-analysis, the magnitude of the effects of acidic deposition, nitrogen deposition, increased ozone levels, elevated atmospheric carbon dioxide, and drought on fine roots and ectomycorrhizal (ECM) characteristics. Ectomycorrhizal colonization was an unsuitable parameter for environmental change, but fine root length and biomass could be useful. Acidic deposition had a significantly negative impact on fine roots, root length being more sensitive than root biomass. There were no significant effects of nitrogen deposition or elevated tropospheric ozone on the quantitative root parameters. Elevated CO2 had a significant positive effect. Drought had a significantly negative effect on fine root biomass. The negative effect of acidic deposition and the positive effect of elevated CO2 increased over time, indicating that effects were persistent contrary the other factors. The meta-analysis also showed that experimental conditions, including both laboratory and field experiments, were a major source of variation. In addition to quantitative changes, environmental changes affect the species composition of the ectomycorrhizal fungal community.
Abstract
No abstract has been registered
Abstract
No abstract has been registered