Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2005

Abstract

We investigate ecosystem dynamics by analyzing time series of measured variables. The information content and the complexity of these data are quantifed by methods from information theory.When applied to runoff (stream discharge) from catchments, the information/complexity relation reveals a simple non-trivial property for a large ensemble (more than 1800) of time series. This behaviour is so far not understood in hydrology.Using a multi-agent network receiving input resembling rainfall and producing output, we are able to reproduce the observed behaviour for the first time. The reconstruction is based on the identification and subsequent replacement of general patterns in the input. We thus consider runoff dynamics as the expression of an interactive learning problem of agents in an ecosystem.

Abstract

We investigate a data set of 160 river runoff time series at daily resolution from catchments in Southern Germany. Our aim is to seek spatial patterns for best parametrization of extreme value distributions to these data sets on one hand, and to analyze temporal instationarities of parameter estimates and extreme value attributes on the other. Conventional extreme value statistics and the calculation of return periods implicitly assume that the most extreme events are statistically independent. We demonstrate that this assumption is invalid, and that correlations, temporal as well as spatial, of arbitrary extent prevail instead. An important consequence is that the concept of return periods is obsolete. In order to find explanatory variables for the observed patterns, features of the waiting time distribution at a given relative threshold are correlated to catchment properties, such as size, mean runoff volume, elevation, and others. Finally, the effect of varying temporal resolution on the duration periods is exhibited. http://www.cosis.net/abstracts/EGU05/03192/EGU05-J-03192.pdf

Abstract

Project report to SNS project. Describes the methods for calculating C storage in Norwegian forests. Overview of the C-storage in forests and changes over time. Describing projects that can influence the Norwegian LULUCF reporting.

Abstract

In spring 2002, extensive damages were recorded in southeast Norway on nursery-grown Norway spruce seedlings that had either wintered in nursery cold storage or had been planted out in autumn 2001. The damages were characterised by leader shoot dieback and necroses on the upper or lower part of the 2001-year-shoot. Gremmeniella abietina and Phomopsis sp. were frequently isolated from the diseased seedlings. RAMS (random amplified microsatellites) profiling indicated that the G.abietina strains associated with diseased nursery seedlings belonged to LTT (large-tree type) ecotype, and inoculation tests confirmed their pathogenicity on Norway spruce. Based on sequence analysis of the internal transcribed spacer (ITS) regions of ribosomal DNA, the Phomopsis strains associated with diseased seedlings do not represent any characterized Phomopsis species associated with conifers. Phomopsis sp. was not pathogenic in inoculation tests, this implying it may be a secondary colonizer. ITS-based real-time PCR assays were developed in order to detect and quantify Gremmeniella and Phomopsis in the nursery stock. We describe here the Gremmeniella - associated shoot dieback symptoms on Norway spruce seedlings and conclude that the unusual disease outburst was related to the Gremmeniella epidemic caused by the LTT type on large pines in 2001.

Abstract

Adaptive traits in Picea abies (Norway spruce) progenies are influenced by the maternal temperatures during seed production. Here, we have extended these studies by testing the effects of maternal photoperiod and temperature on phenology and frost hardiness on progenies. Using eight phytotron rooms, seeds from three unrelated crosses were made in an environmental 2 x 2 factorial combination of long and short days and high and low temperatures. The progenies were then forced to cease growth rapidly at the end of the first growing season. An interactive memory effect was expressed the second growth season. Progenies from high temperature and short days, and from low temperatures and long days, started growth later in spring, ceased shoot growth later in summer, grew taller and were less frost hardy in the autumn than their full siblings from low temperatures and short days, and from high temperatures and long days. Norway spruce has developed a memory mechanism, regulating adaptive plasticity by photoperiod and temperature, which could counteract harmful effects of a rapidly changing climate.

Abstract

The root-rot causing fungus Heterobasidion annosum can attack both spruce and pine trees and is the economically most damaging pathogen in northern European forestry. We have monitored the Heterobasidion annosum S-type (fairly recently named H. parviporum) colonization rate and expression of host chitinases and other host transcripts in Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR. We have also transferred a Class IV chitinase to Arabidopsis as well as its promotor in GFP and YFP reporter constructs. Ramets of two 33 -year-old clones differing in resistance were employed as host material and inoculation and wounding was performed. Multiplex real-time PCR detection of host and pathogen DNA was also performed to follow the colonization of the host tissues by the pathogen and the collapse in host DNA levels in infected regions. Host defense transcript levels, as an indicator of the host defense response, were monitored with singleplex real-time PCR. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak clone (409). Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class Ichitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of pathogen perception and host defense signal transduction. This an earlier experiments using mature spruce clones as substrate indicate that it is the speed of the host response and notmaximum amplitude of the host response that is the most crucial component in an efficient defense in Norway spruce toward pathogenic fungi such as H. annosum.

Abstract

To study the mechanisms of inducible disease resistance in conifers, changes in transcript accumulation in roots of Norway spruce (Picea abies (L.) Karst.) seedlings exposed to the root rot pathogen Ceratobasidium bicorne Erikss. and Ryv. (anamorph: Rhizoctonia sp.) were monitored by differential display (DD). Because C. bicorne attacks root tips, a desiccation treatment was added to exclude genes induced by pathogen-related desiccation stress. The DD analysis was defined by the use of 11 sets of primers, covering about 5% of the transcriptome. A comparison of gene expression in control, desiccation- and pathogen-stressed roots revealed 36 pathogen-induced gene transcripts. Based on database searches, these transcripts were assigned to four groups originating from spruce mRNA (25 transcripts), rRNA (five transcripts), fungal mRNA (two transcripts) and currently unknown cDNAs (four transcripts). Real-time PCR was applied to verify and quantify pathogen-induced changes in transcript accumulation. Of the 18 transcripts tested, nine were verified to be Norway spruce gene transcripts up-regulated from 1.3- to 66-fold in the infected roots. Four germin-like protein isoforms, a peroxidase and a glutathione S-transferase, all implicated in oxidative processes, including the oxidative burst, were predicted from sequence similarity searches. Seven class IV chitinase isoforms implicated in fungal cell wall degradation and a nucleotide binding site-leucine rich repeat (NBS-LRR) disease resistance protein homologue related to pathogen recognition were identified. Several transcript species, such as the NBS-LRR homologue and the germin-like protein homologues, have not previously been identified as pathogen-inducible genes in gymnosperms.