Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2006

Sammendrag

A new compact wastewater treatment system for use in single houses has been constructed in eastern Norway. The system is based on the principles of sub-surface flow constructed wetlands using various types of Filtralite as filter media. It consists of a septic tank followed by an aerobic biofilter succeeded by an upflow saturated filter. The aerobic biofilter is essential to remove organic matter and achieve nitrification, while the upflow filter polishes the wastewater and removes microorganisms and phosphorus. During the first 3 years of operation, the system has show stable and high removal with the following average values measured from the outlet of septic tank to the outlet of the upflow filter: 97.0%-BOD7, 30%-N, 99.4%-P, and 70.8%-SS. No Escherichia coli or somatic coliphages have been detected in the effluent. Due to considerable removal of organic mater, nutrients, and pathogens, the effluent will not negatively affect water and soil ecosystems. The system requires low maintenance and is designed to remove phosphorus for 5 years before renewal of the upflow filter media. When saturated with phosphorus, the media is a suitable fertilizer for plant production. (c) 2006 Elsevier B.V. All rights reserved.

Sammendrag

Detailed analyses of thresholded ecological interactions can improve our understanding of the transition from aperiodic to periodic dynamics. We develop a threshold model of the population dynamics of outbreaking bark beetle populations that alternate between non-epidemic and epidemic behavior. The model involves accumulation of resources during low-density periods and depletion during outbreaks. The transition between the two regimes is caused by disturbance events in the form of major tree felling by wind. The model is analyzed with particular reference to the population dynamics of the spruce bark beetle (Ips typographus) in Scandinavia for which a comprehensive literature allows full parameterization. The fairly constant outbreak lengths and the highly variable waiting time between outbreaks that are seen in the historical records of this species agree well with the predictions of the model. The thresholded resource-depletion dynamics result in substantial variation in the degree of periodicity between stochastic realizations. The completely aperiodic tree colonizations are partly predictable when the timing of the irregular windfall events are known. However, the predictability of inter-outbreak periods is low due to the large variation of cases falling most frequently in the middle between the extremes of purely nonperiodic (erratic) and periodic (cyclic) fluctuations.

Sammendrag

In order to improve the basis for utilising nitrogen (N) fixed by white clover (Trifolium repens L.) in northern agriculture, we studied how defoliation stress affected the N contents of major plant organs in late autumn, N losses during the winter and N accumulation in the following spring. Plants were established from stolon cuttings and transplanted to pots that were dug into the field at Apelsvoll Research Centre (60 degrees 42'N, 10 degrees 51' E) and at Holt Research Centre (69 degrees 40' N, 18 degrees 56' E) in spring 2001 and 2002. During the first growing season, the plants were totally stripped of leaves down to the stolon basis, cut at 4 cm height or left undisturbed. The plants were sampled destructively in late autumn, early spring the second year and after 6 weeks of new spring growth. The plant material was sorted into leaves, stolons and roots. Defoliation regime did not influence the total amount of leaf N harvested during and at the end of the first growing season. However, for intensively defoliated plants, the repeated leaf removal and subsequent regrowth occurred at the expense of stolon and root development and resulted in a 61-85% reduction in the total plant N present in late autumn and a 21-59% reduction in total accumulation of plant N (plant N present in autumn + previously harvested leaf N). During the winter, the net N loss from leaf tissue (N not recovered in living nor dead leaves in the spring) ranged from 57% to 74% of the N present in living leaves in the autumn, while N stored in stolons and roots was much better conserved. However, the winter loss of stolon N from severely defoliated plants (19%) was significantly larger than from leniently defoliated (12%) and non-defoliated plants (6%). Moreover, the fraction of stolon N determined as dead in the spring was 63% for severely defoliated as compared to 14% for non-defoliated plants. Accumulation in absolute terms of new leaf N during the spring was highly correlated to total plant N in early spring (R-2 = 0.86), but the growth rates relative to plant N present in early spring were not and, consequently, were similar for all treatments. The amount of inorganic N in the soil after snowmelt and the N uptake in plant root simulator probes (PRS (TM)) during the spring were small, suggesting that microbial immobilisation, leaching and gas emissions may have been important pathways for N lost from plant tissue.

Sammendrag

Acid rain emerged as an important environmental problem in China in the late 1970s. Many years of record economic growth have been accompanied by increased energy demand, greater coal combustion, and larger emissions of pollutants. As a result of significant emissions and subsequent deposition of sulfur, widespread acid rain is observed in southern and southwestern China. In fact, the deposition of sulfur is in some places higher than what was reported from the ?black triangle? in central Europe in the early 1980s. In addition, nitrogen is emitted from agriculture, power production, and a rapidly increasing number of cars. As a result, considerable deposition of pollutants occurs in forested areas previously thought to be pristine. Little is known about the effects of acid deposition on terrestrial and aquatic ecosystems in China. In this article, we present the current situation and what to expect in the future, largely on the basis of results from a five-year Chinese?Norwegian cooperative project. In the years ahead, new environmental challenges must be expected if proper countermeasures are not put into place.