Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

Abstract

In 2008, an epidemic caused by a new Neonectria sp. was discovered on white fir (Abies concolor) in several counties in southern Norway [1]. Later the pathogen was also found on other fir species in Norway and Denmark [2]. Typical symptoms and signs were dead shoots, flagging (dead branches), canker wounds, heavy resin flow, and occasionally red fruiting bodies (perithecia). Pathogenicity tests on several Abies spp. proved the fungus to be very aggressive, which corresponds well with observations of mortality of white fir and subalpine fir (A. lasiocarpa) from different age classes under field conditions. Sequencing of the internal transcribed regions (ITS) of the ribosomal DNA showed that this Neonectria sp. was most similar to N. ditissima (only 5 bp different from isolates in the GenBank), a common pathogen worldwide on broad leaf trees. The ITS sequences were very different (> 20 bp) from N. fuckeliana, a well-known fungus on Norway spruce in Scandinavia and other parts of the world, especially in the northern hemisphere. In 2011, the new Neonectria species was found on diseased trees in a Danish nordmann fir (Abies nordmanniana) seed orchard. Resin flow was seen from mature cones, and tests revealed that the seeds were infected by the Neonectria sp.

Abstract

The winter hardiness of strawberry cultivars used in perennial production systems varies greatly, although a strong linkage exists between transcriptional and metabolic changes during cold acclimation. Still, little information is available on how plant metabolism adapts to cold and freezing temperatures under natural temperature and light conditions. In order to examine the hardening process of overwintering meristematic tissue in Fragaria x ananassa, crown samples of field-grown cvs. ‘Polka’ and ‘Honeoye’ were consecutively collected over a period of 15 weeks, i.e. from the end of the season (week 35/ end August) until midwinter (week 50/ December). Samples were subjected to qGC MS metabolite profiling to assess the reconfiguration of central metabolism, and characterize the regulation of selected compatible solutes (amino acids, Krebs metabolites, sugars, polyols). Besides changes in amino acid patterns (glutamic acid, aspartic acid, and asparagine), monosaccharide levels (fructose) were strongly enhanced until the end of the acclimation period in cv. ‘Honeoye’ (180-fold compared to start control). In contrast, ‘Polka’ showed a concentration peak (36-fold) in week 47 and a decline towards week 50. Also sucrose levels were steadily enhanced throughout the cold hardening period with averagely 6-fold higher levels in ‘Honeoye’ compared to ‘Polka’, thus underscoring cultivar differences. However, both cultivars showed a clear decline in sucrose levels after week 47. Particularly, the raffinose pathway was affected leading to strongly and transiently increased levels of the precursor galactinol (week 42/ mid October) and the trisaccharide raffinose (weeks 43 to 47/ end October to mid November). While galactinol biosynthesis was obviously earlier induced in cv. ‘Polka’ (week 38) compared to ‘Honeoye’ (week 39), subsequent raffinose production and concentration peaks were clearly delayed in ‘Polka’ (week 47) in contrast to ‘Honeoye’ (week 45). Major metabolic changes in both cultivars coincided with a decrease in daylength below 14 h after week 37 (mid September), and a consistent drop below 10°C average day temperature in week 39 (end September). The effect of temperature and light conditions on metabolic cold acclimation in field-grown strawberry is discussed. Keywords: Winter hardiness, metabolite profiling, quadrupole gas chromatography-mass spectrometry (qGC-MS), temperature, light

Abstract

Freezing damage is a crucial factor in the cultivation of perennial crops. Overwintering plants acclimate to decreasing temperatures in their environment and thus, prevent freezing damage of plant tissue. To assess transcriptional and metabolic changes in meristematic tissue (crowns) of octoploid strawberry (Fragaria × ananassa Duch.), acclimation experiments were carried out at above-zero temperature (2 °C) using three cultivars with contrasting cold tolerance: ‘Elsanta’ < ‘Frida’ < ‘Jonsok’. Crowns were sampled after 1 day (d), 2d, 2 weeks (w) and 6w in order to detect short- and long-term metabolic shifts. GC/MS-based metabolite profiling revealed more than 140 metabolites (identified structures, not-annotated mass spectral tags, and unidentified metabolites). Transcriptional changes were assessed at two time points (2d and 6w) using a customized Fragaria microarray chip developed as a joint collaboration between Graminor Breeding Ltd. and NTNU. A total of 4061 differentially regulated transcripts (unique 60-mer probes) with a p-value≤0.05 were detected in all hybridizations. Microarray analysis revealed the up-regulation of ~100 cold-responsive transcripts (TFs and dehydrins), also including enzymes involved in starch breakdown and raffinose biosynthesis. Gene-metabolite correlation analysis revealed strong connectivity in components of Krebs-cycle (citric and succinic acid), amino acids (isoleucine, aspartic acid, glutamic acid, valine and phenylalanine) and the raffinose pathway. Metabolite levels of hexoses (fructose and glucose), trisaccharides (raffinose), amino acids (aspartic acid, alanine and serine), phenols (gallic acid) and several polyphenols still increased during long-term acclimation phase. Varietal differences could be clearly explained by Venn diagrams: frost-tolerant ‘Jonsok’ showed least individual up- or down-regulated transcripts (2 d), and least commonly shared transcripts with frost-sensitive ‘Elsanta’ (2d and 6w). Further multivariate statistics and network analyses underscored genotype-dependent cold responses, and might further guide in the identification of frost-tolerant vs. sensitive plants in diverse Fragaria accessions or cross-breeding populations .