Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2010

Sammendrag

The Svalbard Global Seed Vault provides facilities for the safety deposit of samples of seed of distinct genetic resources of importance to humanity, under black box arrangements and in permafrost conditions supplemented by refrigeration in accordance with internationally agreed standards. The Seed Vault was established by the Norwegian Government in 2008 at 78 degrees North in the Norwegian village of Longyearbyen, on Svalbard, the farthest north you can travel in the world on regularly scheduled commercial jet flight. It is managed in a tripartite arrangement between the Norwegian Ministry of Agriculture and Food, the Global Crop Diversity Trust and the Nordic Genetic Resource Center. The last organisation is responsible for the day to day operation and management and organises deposits in the Seed Vault. The Seed Vault offers the most secure back-up possible for a worldwide network of genebanks that together conserve and make available the biological foundation of agriculture. It contains duplicates of collections of all the world’s major seed crops and a huge range of minor crops. The Seed Vault has a capacity of 4.5 million distinct samples. The seeds are stored in “black-box conditions”, meaning that seed storage boxes remain the property of the institution that sent them, and are not even opened by any party other than the depositor. The storage is provided free of charge. At present, there are more than half a million seed samples in the Vault, origination from 212 countries of the world.

Til dokument

Sammendrag

Current season needle necrosis (CSNN) has been a serious foliage disorder on true fir Christmas trees and bough material in Europe and North America for more than 25 y. Approximately 2-4 weeks after bud break, needles develop chlorotic spots or bands that later turn necrotic. The symptoms have been observed on noble fir (Abies procera), Nordmann fir (A. nordmanniana) and grand fir (A. grandis) on both continents. CSNN was reported as a physiological disorder with unknown aetiology from USA, Denmark, and Ireland, but was associated with the fungus Kabatina abietis in Germany, Austria and Norway. In 2007, a fungus that morphologically resembled K. abietis was isolated from symptomatic needle samples from Nordmann fir from Austria, Denmark, Germany, Norway, and USA. Sequencing of the internal transcribed spacer (ITS) region of ribosomal DNA of these cultures, plus a K. abietis reference culture from Germany (CBS 248.93), resulted in Hormonema dematioides, the imperfect stage of Sydowia polyspora, and thus the taxonomy is further discussed. Inoculation tests on Nordmann fir seedlings and transplants with isolates of S. polyspora from all five countries resulted in the development of CSNN symptoms. In 2009, S. polyspora was also isolated from symptomatic needles from Nordmann fir collected in Slovakia. (c) 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Til dokument

Sammendrag

Tomato plants (Solanum lycopersicum, cv. Suzanne) were subjected to complete nutrient solution or a solution without nitrogen (N), and placed at different temperatures and light conditions to test the effects of environment on flavonoids and caffeoyl derivatives and related gene expression. N depletion during 4-8 days resulted in enhanced levels of flavonoids and caffeoyl derivatives. Anthocyanins showed pronounced increased levels when lowering the growth temperature from 24 degrees C to 18 degrees C or 12 degrees C. Flavonol levels increased when the light intensity was increased from 100 mu mol m(-2) s(-1) to 200 mu mol m(-2) s(-1) PAR. Synergistic effects of the various environmental factors were observed. The increase in content of quercetin derivatives in response to low temperatures was only found under conditions of N depletion, and especially at the higher light intensity. Expression of structural genes in the phenylpropanoid and flavonoid pathways, PAL (phenylalanine ammonia lyase), CHS (chalcone synthase), F3H (flavanone 3-hydroxylase), and FLS (flavonol synthase) increased in response to N depletion, in agreement with a corresponding increase in flavonoid and caffeoyl content. Expression of these structural genes generally also increased in response to lower temperatures. As indicated through expression studies and correlation analysis, effects of N depletion were apparently mediated through the overall regulators of the pathway the MYB transcription factor ANT1 (ANTHOCYANIN 1) and SlJAF13 (a bHLH transcription factor orthologue of petunia JAF13 and maize RED genes). A PAL gene (PAL6) was identified, and correlation analysis was compatible with PAL6 being an actively expressed gene with function in flavonoid synthesis. (C) 2009 Elsevier Ltd. All rights reserved.

Til dokument

Sammendrag

Norwegian agriculture has, as in most western-European countries, gone through several periods of change during the last 100 years. Pronounced changes have occurred in production systems and the spatial organisation of farm land, as well as agricultural policy. During the last 50 years, official statistics document a marked decline in the number of active farms. This decline has caused concern, as Norway traditionally has had an agricultural policy that emphasises self-sufficiency and rural settlement. Yet statistics also show that the amount of agricultural land in use has remained the same. This is usually explained through a larger proportion of tenanted land, as technological progress has allowed production levels to be maintained with a smaller workforce. Studies elsewhere in Europe show, however, that tenancy may not promote the same levels of investment and landscape management as owner occupation. To assess the potential impact of this change on Norway's landscape (and its value as both a cultural and tourism resource) we analyse tenancy patterns in Norwegian agriculture between 1999 and 2003. In particular we note that, even if owner occupation remains strong nationally, when the statistics are broken down by municipality, tenancy has increased significantly in some areas. This has left large areas of land managed as tenancies by a relatively small number of farmers, including parts of the iconic west coast fjords. We conclude therefore that further work is urgently required to establish whether the effects of tenancy seen elsewhere apply to Norway, whether this exposes key landscapes to increased risk of abandonment and if so what appropriate political responses there could be.

Til dokument

Sammendrag

The effect of potential resistance inducing chemicals on disease development of Fusarium head blight was studied in winter wheat (Triticum aestivum L.). As a pre-screening test, the effect of different treatments on development of Microdochium majus (syn. Microdochium nivale var. majus) was studied in detached leaves. Based on these tests, DL-3-aminobutyric acid, Bion (benzo-(1,2,3) thiadiazole-7-carbothioic acid S-methyl ester), and a foliar fertilizer containing potassium phosphite were selected for further studies. Greenhouse-grown winter wheat was sprayed with aqueous solutions of the potential resistance inducers 7 days prior to Fusarium culmorum point inoculation of the heads. Disease development was registered as number of bleached spikelets per inoculated spike. Spraying plants with the foliar fertilizer reduced the disease severity of F. culmorum by up to 40%. A reduced disease development of M. majus was also observed in detached leaves pre-treated with the foliar fertilizer. When the foliar fertilizer was added to the growth medium, a reduced in vitro growth of M. majus and F. culmorum was observed, indicating that the effect on disease development is at least partly due to a fungistatic effect. No significant reduction in disease development was observed in wheat pre-treated with DL-3-aminobutyric acid or Bion, although these compounds tended to reduce disease development, especially when applied in combination with other potential resistance inducers. We conclude that spraying winter wheat with a solution containing potassium phosphite can reduce development of M. majus and F. culmorum.

Sammendrag

In European forests, standing stocks are currently higher than ever during the last decades, in part due to reduced logging or the abandonment of agricultural land. However, data from intensive monitoring plots reveal an increased growth even without direct human intervention.We used a set of 363 plots from 16 European countries to investigate the influence of environmental factors on forest growth: nitrogen, sulphur and acid deposition, temperature, precipitation and drought, for Norway spruce, Scots pine, common beech and European as well as sessile oak.We used existing information on site productivity, stand age and stand density to estimate expected growth. Relative tree growth, i.e., the ratio between actual growth within a five-year period and expected growth, was then related to environmental factors in a stepwise multiple regression.The results consistently indicate a fertilizing effect from nitrogen deposition, with roughly one percent increase in site productivity per kg of nitrogen deposition per ha and year, or 20 kg C fixation per kg N deposition. This was most pronounced for plots having soil C/N ratios above 25. We also found a positive albeit less clear relationship between relative growth and summer temperatures.From the study, we cannot conclude on any detrimental effects on growth from sulphur and acid deposition or from drought periods. A very recent study from the U.S., comprising 4800 plots and 24 tree species, confirms our results. However, we also show that the magnitude of N deposition effects on global forest C balance is currently a highly controversial matter, and comment on this debate. http://www.cef-cfr.ca/uploads/Colloque/Programme10_5.pdf