Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

The Indo-Gangetic Plain (IGP) is one of the main wheat-production regions in India and the world. With climate change, wheat yields in this region will be affected through changes in temperature and precipitation and decreased water availability for irrigation, raising major concerns for national and international food security. Here we use a regional climate model and a crop model to better understand the direct (via changes in temperature and precipitation) and indirect (via a decrease in irrigation availability) impacts of climate change on wheat yields at four sites spread across different states of the IGP: Punjab, Haryana, Uttar Pradesh and Bihar. The results show an increase in mean temperature and precipitation as well as maximum temperature during the growing season or Rabi season (November–April). The direct impact of climate change, via changes in temperature and precipitation, leads to wheat yield losses between −1% and −8% depending on the site examined. Then, the indirect impact of climate change is examined, considering the impact of climate change on water availability leading to a decrease in irrigation. In this case, the yield losses become significant and much higher, reaching −4% to −36% depending on the site examined and the irrigation regime chosen (6, 5, 3 or 1 irrigations). This work shows that the indirect impacts of climate change may be more detrimental than the direct climatic effects for the future wheat yields in the IGP. It also emphasizes the complexity of climatic risk and the necessity of integrating indirect impacts of climate change to fully assess how it affects agriculture and choose the adequate adaptation response.

To document

Abstract

Forests are the dominant land cover in Nordic–Baltic countries, and forestry, the management of forests for improved ecosystem-service (ES) delivery, is an important contributor to sustainability. Forests and forestry support multiple United Nations Sustainability Goals (UN SDGs) and a number of EU policies, and can address conflicting environmental goals. Forests provide multiple ecosystem services and natural solutions, including wood and fibre production, food, clear and clean water and air, animal and plant habitats, soil formation, aesthetics, and cultural and social services. Carbon sequestered by growing trees is a key factor in the envisaged transition from a fossil-based to a biobased economy. Here, we highlight the possibilities of forest-based solutions to mitigate current and emerging societal challenges. We discuss forestry effects on forest ecosystems, focusing on the optimisation of ES delivery and the fulfilment of UN SDGs while counteracting unwanted effects. In particular, we highlight the trilemma of (i) increasing wood production to substitute raw fossil materials, (ii) increasing forest carbon storage capacity, and (iii) improving forest biodiversity and other ES delivery.

Abstract

This study documents volume increment and natural mortality in 1379 old boreal forests plots during four consecutive inventory cycles in the Norwegian national forest inventory. The stands age up to 100 years beyond recommended rotation length (close to economical optimal rotation length) and comprise a wide range of site productivity classes in both pine- and spruce-dominated forests. The annual gross volume increment was stable and nearly constant up to 50–100 years beyond economically optimal rotation length. In parallel, there was very low natural mortality (0.22–0.66% of standing volume) with minimal risk of stand collapse. Stands with satisfactory stocking had volume increment equal to or higher than the reference volume increment in managed stands harvested at recommended rotation length, while poorly stocked stands had inferior volume increment. From a climate change mitigation perspective, it seems to be a good strategy to extend the rotation length beyond what is currently recommended, provided that the stands have satisfactory stocking.