Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

2021

To document

Abstract

The purpose of this research is to develop a method for estimating the spatially and temporally resolved moisture content of thermally modified Scots pine (Pinus sylvestris) using remote sensing. Hyperspectral time series imaging in the NIR wavelength region (953–2516 nm) was used to gather information about the absorbance of eight thermally modified pine samples each minute as they dried during a period of approximately 20 h. After preprocessing the collected spectral data and identifying an appropriate wavelength selection, partial least squares regression (PLS) was used to map the absorbance data of each pine sample to a distribution of moisture contents within the samples at different time steps during the drying process. To enable separate studying and comparison of the drying dynamics taking place within the early- and latewood regions of the pine samples, the collected images were spatially segmented to separate between early- and latewood pixels. The results of the study indicate that the 1966–2244 nm region of a NIR spectrum, when preprocessed with extended multiplicative scatter correction and first order derivation, can be used to model the average moisture content of thermally modified pine using PLS. The methods presented in this paper allows for estimation and visualization of the intrasample spatial distribution of moisture in thermally modified pine wood.

Abstract

Composting and anaerobic digestion are the most common ways to treat organic residues. Sometimes the organic rest after anaerobic digestion is also composted. In this study we investigated greenhouse gas emissions from composting raw food waste compared to composting solid digestate of food waste. Cumulative methane emissions over 3 weeks were found to be almost 12 times higher from composting digested food waste than from raw food waste suggesting that the microbial community transferred from the anaerobic digestion to the compost process enhanced these emissions. Cumulative nitrous oxide emissions were also higher when composting solid digestate was compared to composting raw food waste, but the global warming potential was mostly driven by the impact of methane emissions. In conclusion, methane production during digestate composting can be high, therefore eliminating methane producing microbes in digestate before composting could be a promising way to reduce greenhouse gas emissions.

To document

Abstract

Durability-based designs with timber require reliable information about the wood properties and how they affect its performance under variable exposure conditions. This study aimed at utilizing a material resistance model (Part 2 of this publication) based on a dose–response approach for predicting the relative decay rates in above-ground situations. Laboratory and field test data were, for the first time, surveyed globally and used to determine material-specific resistance dose values, which were correlated to decay rates. In addition, laboratory indicators were used to adapt the material resistance model to in-ground exposure. The relationship between decay rates in- and above-ground, the predictive power of laboratory indicators to predict such decay rates, and a method for implementing both in a service life prediction tool, were established based on 195 hardwoods, 29 softwoods, 19 modified timbers, and 41 preservative-treated timbers.