Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

To document

Abstract

Without herbicides, the control of Elymus repens relies on intensive tillage, often in the form of repeated post-harvest stubble cultivations followed by ploughing. This is costly and time-consuming and also increases the risk of nitrogen leaching. Our aim was to quantify the controlling effect on E. repens of single and repeated cultivation and differing time of cultivation in relation to spring cereal harvest. A 2-year experiment was conducted at two sites in the south and east of Sweden in 2011–2012 and 2012–2013. We compared no, single and repeated tine cultivation followed by mouldboard ploughing; the single cultivation was performed directly after harvest or 20 days after harvest; when repeated, the first cultivation was performed immediately or 5 days after harvest, followed by a second cultivation 20 days after harvest. Tine cultivation in combination with mouldboard ploughing resulted in 50–70% lower rhizome biomass, and increased average subsequent cereal yields by 0–130% compared with ploughing alone. Large E. repens populations appeared to be more efficiently reduced by tine cultivation than smaller populations. A single tine cultivation 20 days after harvest tended to result in a higher E. repens shoot density and more rhizome biomass in the subsequent year than tine cultivation directly after harvest. Additional cultivation 20 days after harvest did not improve control of E. repens or the subsequent cereal grain yield, compared with a single cultivation conducted directly after harvest. In conclusion, preventing the growth of E. repens during the early part of the post-harvest autumn period was more important than starving rhizomes with repeated cultivations.

To document

Abstract

India has more than 215 million food-insecure people, many of whom are farmers. Genetically modified (GM) crops have the potential to alleviate this problem by increasing food supplies and strengthening farmer livelihoods. For this to occur, two factors are critical: (i) a change in the regulatory status of GM crops, and (ii) consumer acceptance of GM foods. There are generally two classifications of GM crops based on how they are bred: cisgenically bred, containing only DNA sequences from sexually compatible organisms; and transgenically bred, including DNA sequences from sexually incompatible organisms. Consumers may view cisgenic foods as more natural than those produced via transgenesis, thus influencing consumer acceptance. This premise was the catalyst for our study—would Indian consumers accept cisgenically bred rice and if so, how would they value cisgenics compared to conventionally bred rice, GM-labelled rice and ‘no fungicide’ rice? In this willingness-to-pay study, respondents did not view cisgenic and GM rice differently. However, participants were willing-to-pay a premium for any aforementioned rice with a ‘no fungicide’ attribute, which cisgenics and GM could provide. Although not significantly different (P = 0.16), 76% and 73% of respondents stated a willingness-to-consume GM and cisgenic foods, respectively.