Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2010
Abstract
No abstract has been registered
Authors
Anette Moldestad Ellen Mosleth Færgestad Bernt Hoel Anne Kjersti UhlenAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Per Otto Flæte Gry Alfredsen Kristian Bysheim Øyvind Eriksen Anders Qvale Nyrud Birger VenneslandAbstract
Roundwood timber is raw material for numerous products. Wood based products are generally recognised as favourable regarding energy consumption and greenhouse gas (GHG) emissions. Several studies have shown that the net CO2 emissions can be reduced by using biofuels harvested from forests to substitute fossil fuels, and by using wood for building materials. Energy use and GHG emissions associated with producing roundwood can be influenced by a broad range of factors, such as silvicultural practice, topography, applied technology, forestland ownership, industrial structure, etc. This emphasizes the importance of using representative data for energy use and GHG emissions when calculating environmental impacts. The aim of this study was to investigate the embodied energy and life cycle GHG emissions of industrial softwood sawlogs in Norway, covering the production chain from tree seed to log yard. Analyses were based on activity data for the Norwegian forest sector for the year 2007. The results showed that the embodied energy and GHG emissions were low compared with the energy and CO2-equivalents stored in the roundwood (about 2%). The findings from this study can be used to inform future decisions on processes in forestry that should be focused on when planning actions to reduce energy consumption and GHG emissions. Additionally, as roundwood timber is raw material for numerous products the results can be useful when preparing documentation of environmental impacts, such as environmental product declarations, which are increasingly demanded by the market.
Authors
Anders Møyner Eid HohleAbstract
No abstract has been registered
Abstract
Currently, very little data exist on the exposure of soil biota to engineered nanoparticles (ENPs), in spite of soils being an important potential sink for ENPs. Though, data on exposure are essential to determine whether or not, or to which extent, a hazard constitutes a risk. This knowledge gap is mainly due to difficulties in tracing ENPs in soils where natural nanoparticles are abundant. We used neutron activated ENPs as tracers and examined the exposure (uptake, excretion and internal distribution) of nanoparticles of cobalt (Co NPs 3.9 ± 0.8 nm) and silver (Ag NPs 20.2 ± 2.5 nm) in the earthworm Eisenia fetida, and compared this to soluble cobalt and silver salts. Accumulation patterns were highly different for cobalt and silver. Concentrations of cobalt in worms after 4 weeks exposure reached 88% and 69% of the Co ions and Co NPs concentrations in food, respectively, while corresponding values for Ag ions and Ag NPs were 2.3% and 0.4%. Both Ag NPs and Ag ions in earthworms were excreted rapidly, while only 32% of the accumulated Co ions and Co NPs were excreted within a 4 months depuration period. High accumulation of cobalt was found in blood, and to a lesser extent in the digestive tract. Sequential extraction and centrifugal ultrafiltration provided useful information on metal speciation, dissolution and bioavailability of Co NPs and Ag NPs. Both Ag NPs and Ag ions were strongly bound to soil constituents, whereas Co NPs and Co ions were largely found as water soluble species, in good agreement with the results from the uptake study.
Abstract
No abstract has been registered
Abstract
The exponential increase in the use of engineered nanomaterials (ENMs) in a variety of commercially available products has raised concerns about their release into environmental compartments. Soils in particular have been pointed out as a major environmental sink for ENMs, e.g. through the application of sewage sludge to soil. However, data are scarce on the fate of ENMs in soils and on their bioavailability to organisms once ENMs interact with the soil matrix. The main reason for this knowledge gap has been the methodological challenges to trace and quantify ENMs in complex matrices like soils due to the presence of abundant natural nanoparticles (e.g. clays, iron oxides, organic matter). Methods able to overcome this hurdle will be introduced, as well as their limitations. The aim of this lecture is to present the current state of knowledge on the fate, behavior and toxicity of some of the most commercialized ENMs (carbon nanotubes, fullerenes, metal and metal oxides) in terrestrial ecosystems. We will see the potential modifications ENMs may undergo in soils, namely agglomeration, adsorption to soil constituents, dissolution of particles, effects of pH and organic matter on their speciation, and how these parameters can influence their transport in soil and their bioavailability to organisms. Ecotoxicity will also be addressed, through studies on bacteria, nematodes and earthworms.
Authors
Line Emilie Sverdrup Christine Bjørge Ole Martin Eklo Torsten Källqvist Ingeborg Klingen Marit Låg Edgar Rivedal Erik Ropstad Steinar Øvrebø Merete GrungAbstract
No abstract has been registered