Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

The growing interest in using everbearing (EB) strawberry cultivars to extend the cultivation period has faced some challenges. These include poor runner production due to its perpetual flowering nature; irregular flowering behavior and extended periods of high temperature have caused floral inhibition and reduced yield. As flowering is an interplay between temperature and photoperiod, it is important to investigate the effects of this interaction on the cultivation. Therefore, this study used meristem dissection as a tool to study the effect of temperature and photoperiod on meristem development. Tray plants of two EB strawberry cultivars ‘Florentina’ and ‘Favori’ were grown at 20 °C, 25 °C, and 30 °C under short day (SD) conditions, and subsequently at 20 °C under long day (LD) conditions. The meristem development was analysed every 6 weeks for a 15-week period in SD and for 14 weeks in LD conditions using meristem dissection. The plants showed similar flowering patterns to previously studied everbearing cultivars, which was qualitative LD plants at high temperatures and quantitative LD plants at lower temperatures. Our results show that meristem dissection can be used to determine the temperature and photoperiodic effect on meristem development, and for the occurrence of cropping peaks, and can therefore be used to decide the environmental input and to evaluate yield potential.

To document

Abstract

There is little knowledge about photosynthesis in everbearing strawberry cultivars. We therefore grew three everbearing strawberry cultivars in daylight phytotron compartments at temperatures of 9, 15, 21 and 27°C and photoperiods of 10 h (SD) and 20 h (LD). After three weeks, the rates of dark respiration and photosynthesis and their acclimation were measured in 'Favouri'. Photosynthesis of plants grown in the various conditions was measured as CO2-uptake with an infrared gas analyzer at increasing irradiances (50-1000 µmol quanta m‑2 s‑1) and temperatures ranging from 9 to 27°C. In the dark, CO2-production (dark respiration) increased with increasing measuring temperature and was always largest in plants grown at low temperature (9°C) with no significant effect of photoperiod. Photosynthetic CO2-uptake was lowest at almost all irradiances in plants grown at 9°C, and with no clear effect of growth temperatures in the 15-27°C range. At saturating irradiances (500-1000 µmol), CO2-uptake increased with increasing measuring temperatures, reaching a plateau at about 21°C for plants grown at 15-27°C in SD and at 21-27°C in LD. For plants grown at 15°C in LD, the maximum CO2-uptake rate was obtained at 27°C. Light response curves showed that CO2-uptake increased with increasing irradiance and measuring temperatures and that the irradiance effect was markedly enhanced by increasing growth temperature. Maximum uptake rates were lowest for plants grown at 9°C at both photoperiods and highest for plants grown at 15°C in SD. Comparison of plants of 'Altess', 'Favouri' and 'Murano' at 500 µmol irradiance and 21°C revealed no significant differences in photosynthetic efficiency between the cultivars. Generally, the everbearing strawberry cultivars showed considerable photosynthetic plasticity to temperature within the 9-27°C range, although with an overall optimum at 15-21°C.