Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Forfattere
Randi Berland FrøsethSammendrag
No abstract has been registered
Forfattere
Randi Berland FrøsethSammendrag
No abstract has been registered
Forfattere
Randi Berland FrøsethSammendrag
No abstract has been registered
Sammendrag
Light exposure of potatoes induces formation of both chlorophyll (greening) and of toxic glycoalkaloids (GAs). Greening leads to rejection by consumers and thus to food waste and economic loss. The aim of this study was to (1) study light sensitivity with respect to colour changes and GA development for different Norwegian grown potato cultivars stored at 20 °C and (2) evaluate the light protective effect of selected packaging materials on colour development in cv. Folva at 6 °C and 20 °C. Potatoes of seven cultivars were stored under LED illumination for 4 days at 20 °C. Changes in colour were measured during storage by Minolta Chroma meter and by visually assessing the limit for unacceptable change of colour. The tested cultivars became unacceptable at different times (24–60 h) and differed both in absolute colour values and relative changes of values. The levels of total glycoalkaloids in cultivars with and without light exposure did not correspond well to the changes in colour. Potatoes of cultivar Folva were packaged in materials with different light barrier properties, followed by LED illumination for 4 days at 20 °C and 18 days at 6 °C. None of the tested packaging types provided sufficient protection from light. All potatoes at 20 °C were unacceptably green after 2 days in light (16 h/day) while the potatoes at 6 °C were unacceptably green after 9 days. Packaging material for potatoes cv. Folva should aim for a total light transmittance below 0.02 W/m2 to avoid development of green colour during light exposure at 20 °C in grocery stores.
Forfattere
Mekjell Meland Milica Fotiric Aksic Oddmund Frøynes Almira Konjic Lejla Lasic Naris Pojskic Fuad GasiSammendrag
In order to best conserve, as well as utilize, traditional apple germplasm in Norway, an apple heritage cultivar collection was established in Ullensvang, western Norway, which aims to become the National Clonal Germplasm Repository. The establishment of the apple heritage cultivar collection was preceded by a molecular study that aimed to genotype a large number of apple accessions maintained in various ex situ sites in western and south-eastern Norway, using a rather small set of eight SSR markers. However limited, the marker set managed to identify synonyms, homonyms, and duplicates within and among the investigated collections. In this study, 171 apple accessions from the Ullensvang apple heritage cultivar collection were genotyped using a set of 20 different SSR markers. Approximately half of the accessions have been previously genotyped using eight SSR markers, enabling an assessment of whether the use of a larger marker set would yield a more accurate characterization. Based on the obtained molecular data, the apple heritage cultivar collection was determined to hold a key part of the overall genetic diversity of the Norwegian apple germplasm. Furthermore, the twelve additional SSR markers were able to differentiate several accessions groups originally thought to be synonyms, as well as to provide a more detailed insight into the genetic structure of this germplasm.
Forfattere
Frode VeggelandSammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Forfattere
Till SeehusenSammendrag
No abstract has been registered
Sammendrag
No abstract has been registered
Forfattere
Ilaria Piccoli Till Seehusen Jenny Bussell Olga Vizitu Irina Calciu Antonio Berti Gunnar Börjesson Holger Kirchmann Thomas Kätterer Felice Sartori Chris Stoate Felicity Crotty Ioanna S. Panagea Abdallah Alaoui Martin A. BolinderSammendrag
Soil compaction (SC) is a major threat for agriculture in Europe that affects many ecosystem functions, such as water and air circulation in soils, root growth, and crop production. Our objective was to present the results from five short-term (<5 years) case studies located along the north–south and east–west gradients and conducted within the SoilCare project using soil-improving cropping systems (SICSs) for mitigating topsoil and subsoil SC. Two study sites (SSs) focused on natural subsoil (˃25 cm) compaction using subsoiling tillage treatments to depths of 35 cm (Sweden) and 60 cm (Romania). The other SSs addressed both topsoil and subsoil SC (˃25 cm, Norway and United Kingdom; ˃30 cm, Italy) using deep-rooted bio-drilling crops and different tillage types or a combination of both. Each SS evaluated the effectiveness of the SICSs by measuring the soil physical properties, and we calculated SC indices. The SICSs showed promising results—for example, alfalfa in Norway showed good potential for alleviating SC (the subsoil density decreased from 1.69 to 1.45 g cm−1) and subsoiling at the Swedish SS improved root penetration into the subsoil by about 10 cm—but the effects of SICSs on yields were generally small. These case studies also reflected difficulties in implementing SICSs, some of which are under development, and we discuss methodological issues for measuring their effectiveness. There is a need for refining these SICSs and for evaluating their longer-term effect under a wider range of pedoclimatic conditions.