Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

Previous application of the stochastic frontier model and subsequent measurement of the performance of the crop sector can be criticized for the estimated production function relying on the assumption that the underlying technology is the same for different agricultural systems. This paper contributes to estimating regional efficiency and the technological gap in Norwegian grain farms using the stochastic metafrontier approach. For this study, we classified the country into regions with district level of development and, hence, production technologies. The dataset used is farm-level balanced panel data for 19 years (1996–2014) with 1463 observations from 196 family farms specialized in grain production. The study used the true random effect model and stochastic metafrontier analysis to estimate region-level technical efficiency (TE) and technology gap ratio (TGR) in the two main grain-producing regions of Norway. The result of the analysis shows that farmers differ in performance and technology use. Consequently, the paper gives some regionally and farming system-based policy insights to increase grain production in the country to achieve self-sufficiency and small-scale farming in all regions.

Abstract

Purpose The study measures the technology gap and performance of the Norwegian dairy farms accounting for farm heterogeneity. Design/methodology/approach The analysis was based on a meta-frontier and unbalanced farm-level panel data for 1991–2014 from 417 Norwegian farms specialized in dairy production in five regions of Norway. Findings The result of the analysis provides empirical evidence of regional differences in technical efficiencies, technological gap ratios (TGRs) and input use. Consequently, the paper provides some insights into policies to increase the efficiency of dairy production in the country across all regions. Research limitations/implications The author used a meta-frontier approach for modeling regional differences based on a single-output production function specification. This approach has commonly been used in the economics literature since Battese et al. (2004). To get more informative and useful results, it would be necessary to repeat the analysis within terms of multiple input-output frameworks using, for instance, the input distance function approach. Moreover, the author estimated the meta-frontier using the non-parametric approach, thus it is also a need for further analysis if the values are different by estimating using a parametric approach. Practical implications One implication for farmers (and their advisers) is that dairy farms in all regions used available technology in the area sub-optimally. Thus, those lagging the best-performing farms need to look at the way the best-performing farmers are operating. Policymakers might reduce the gap is through training, including sharing information about relevant technologies from one area to another, provided that the technologies being shared fit the working environment of the lagging area. Moreover, some of the dairy technologies they use may not fit other regions, suggesting that agricultural policies that aim to encourage efficient dairy production, such as innovation of improved technology (like breeding, bull selection and improved feed varieties) through research and development, need to account the environmental differences between regions. Social implications For both taxpayers and consumers, one implication is that the contributions they pay that go to subsidize dairy farmers appear to bring some benefits in terms of more efficient milk production that, in turn, increases the supply of some foods so possibly making food prices more affordable. Originality/value The paper contributes to the literature in several ways. In contrast to Battese et al. (2004), the author accounts for farm-level performance differences by applying the model devised by Greene (2005), thus may serve as a model for future studies at more local levels or of other industries. Moreover, the author is fortunate to able to use a large level farm-level panel data from 1991 to 2014.

Abstract

Growing environmental concerns have prompted governments to make sustainable choices in agricultural resource use. Evaluating the sustainability of agricultural systems is a key issue for the implementation of policies and practices aimed at revealing sustainability. This study aimed to evaluate the performance of Norwegian dairy farms, accounting for marginal effects of environmental (exogenous) variables. We adopted the dynamic parametric approach within the input distance function framework to estimate the performance of Norwegian dairy farms, focusing on the technical efficiency and determinates. For comparison, we also estimated the static parametric model, which was used by previous studies. We used unbalanced farm-level panel data for the period 2000–2018. The result shows a mean technical efficiency score of 0.92 for the dynamic model and 0.87 for the static models. The empirical result shows that the previous studies that focused on the static model reported a biased result on the performance of dairy farms. The dynamic efficiency score suggests that Norwegian dairy farms can reduce the input requirement of producing the average output by 8% if the operation becomes technically efficient. The environmental variables have a different effect on the performance of the farmers; thus, policymakers need to place special focus on these variables for the sustainable development of the dairy sector.

To document

Abstract

Red clover (Trifolium pratense L.) is the most important forage legume in the Nordic region, but its utilization is limited by poor persistency. The improvement of cultivated red clover can potentially take advantage of the numerous wild populations and landraces conserved in gene banks; however, there is often limited information available on the phenotypic and genetic characteristics of this material. We characterized 48 populations conserved at NordGen for a number of traits and compared them to commercial cultivars. The material was evaluated in field trials at four locations over two years and in an experiment under controlled conditions. Considerable variation was identified, with stem length, growth type and flowering date having the highest broad sense heritabilities. Traits related to plant size were strongly associated with late flowering and upright growth and differed between landraces/cultivars on the one hand and wild populations on the other. There was a large genotype by environment interaction on winter survival, which only partially correlated with freezing tolerance under controlled conditions. A majority of gene bank accessions exceeded the commercial cultivars in winter survival and freezing tolerance and can therefore be a genetic resource for future improvement of these traits. The phenotypic variation among accessions was associated with two main axes of climatic variation at the collection site. Petiole length of young plants under controlled conditions as well as plant size in the field increased with increasing summer temperature and decreasing summer precipitation, while number of leaves and an apparent vernalization requirement, recorded under controlled conditions, increased with decreasing annual and winter temperature. We discuss the implications these results have for collection, conservation and utilization of red clover genetic resources in the Nordic region.

To document

Abstract

Seaweeds are increasingly used in European cuisine. Until the recent use of molecular techniques, species identification was solely based on morphology which cannot easily discriminate morphologically simple but phenotypically plastic taxa such as the green algal genus Ulva. For example, current taxonomic protocol effectively reassigned the previously known European ʻUlva lactuca L.’ under the name Ulva fenestrata Postels & Ruprecht. Also, the presumptive Ulva lactuca approved by the Institute for Reference Materials and Measurements (IRMM, Joint Research Center, European Commission) as Certified Reference Material (CRM) for analytical quality assurance was genetically identified as U. rigida C.Agardh. It is very likely that different Ulva species under various names have been consumed as food not only in Europe, but also worldwide. In this regard, when chemical composition and nutritional quality of different seaweed species meet a set of food standard criteria, and food safety hazards are mitigated, they should be endorsed for consumption. In the case of Ulva, we propose that different bladed and tubular species should generally be accepted for food consumption in Europe.

To document

Abstract

Macrocystis pyrifera is a major habitat forming kelp in coastal ecosystems of temperate regions of the northern and southern hemispheres. We investigated the seasonal occurrence of adult sporophytes, morphological characteristics, and reproductive phenology at two sites within a wave-protected harbour and two wave-exposed sites in southern New Zealand every 3–4 months between 2012 and 2013. Seasonality in reproduction was assessed via the number of sporophylls, the occurrence of sori on sporophylls, and non-sporophyllous laminae (fertile pneumatocyst-bearing blades and fertile apical scimitars), meiospore release, and germination. We found that M. pyrifera was present and reproductive year-round in three of the four sites, and patterns were similar for the wave-exposure conditions. Sori were found on pneumatocyst-bearing blades and apical scimitars in addition to the sporophylls, and viable meiospores were released from all three types of laminae. Morphological variations between sites with different wave exposure indicate that sporophytes from wave-protected sites have bigger blades and holdfasts and are longer than those from wave-exposed sites. We discuss the implications of these biological variables for the ecology of M. pyrifera inhabiting different wave exposure environments in southern New Zealand.