Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Understanding the mechanisms of ecological community dynamics and how they could be affected by environmental changes is important. Population dynamic models have well known ecological parameters that describe key characteristics of species such as the effect of environmental noise and demographic variance on the dynamics, the long-term growth rate, and strength of density regulation. These parameters are also central for detecting and understanding changes in communities of species; however, incorporating such vital parameters into models of community dynamics is challenging. In this paper, we demonstrate how generalized linear mixed models specified as intercept-only models with different random effects can be used to fit dynamic species abundance distributions. Each random effect has an ecologically meaningful interpretation either describing general and species-specific responses to environmental stochasticity in time or space, or variation in growth rate and carrying capacity among species. We use simulations to show that the accuracy of the estimation depends on the strength of density regulation in discrete population dynamics. The estimation of different covariance and population dynamic parameters, with corresponding statistical uncertainties, is demonstrated for case studies of fish and bat communities. We find that species heterogeneity is the main factor of spatial and temporal community similarity for both case studies.
Authors
Jessica Petereit Christina Hoerterer Adrian A. Bischoff-Lang Luís E. C. Conceição Gabriella Pereira Johan Johansen Roberto Pastres Bela H. BuckAbstract
There is an increasing need in the aquaculture industry for more sustainable and functional feed concepts for marine finfish. This study provides results for the effect of alternative feed formulations on health status, welfare parameters, sensory analysis, and growth performance in European seabass (Dicentrarchus labrax) over an 83-day feeding trial. Fish were fed twice a day with five experimental diets. A control diet (control) and four different alternative feed concepts rich in processed animal proteins (PAP), other alternative ingredients (NOPAP), and a positive (NOPAP+) and negative (PAP−) formulation were tested. All alternative formulations contained hydrolysates from aquaculture by-products and macroalgae. The results indicate that the alternative feed concepts are more sustainable alternatives compared with the commercial diet. Equally interesting, the alternative formulations did not affect the sensory analysis of the fillet quality or the animal welfare. These are increasingly important factors in aquaculture products and, accordingly, also in the formulation of new feeds. Feed concepts that are not only more sustainable in their production, have shorter transportation distances, recycle the resources (usage of by-products), and have no adverse effect on growth or welfare parameters are highly needed. Therefore, the experimental diets tested in this study are a win-win concept for future seabass aquaculture production.
Authors
Kristin Hamre Giulia Micallef Marie Hillestad Johan Johansen Sofie c Remø Wuxiao Zhang Elisabeth Rasmussen Ødegård Hernandez Pedro W Araujo P. Antony Jesu Prabhu Rune WaagbøAbstract
The hypothesis of the present study was that increased growth in spring, stimulated by increasing temperature and daylength, leads to oxidative stress in Atlantic salmon with accumulation of oxidation products in the tissues and increased utilization of antioxidants. The drop in fillet pigmentation and astaxanthin, often observed in spring by the industry, could be explained by oxidative stress. Furthermore, oxidative stress may cause production related diseases such as development of cataracts and melanin spots in the fillet. We sampled Atlantic salmon from two cages in a commercial scale experiment in Northern Norway (67°N), every month from April until August and then every second month until December (510 ± 160–3060 ± 510 g, mean weight ± std). The specific growth rate (SGR) increased with increasing temperature until midsummer and decreased thereafter. We found that vitamin E in the fillet and vitamin C in the liver were depleted in the spring and were restored in the autumn, even though the dietary concentrations were stable. Astaxanthin concentration in the muscle was constant during the spring and summer and increased in the autumn, concomitant with an increase in astaxanthin supplementation. Cataract increased from zero in May until July, when 90% of the fish were affected. The glutathione based redox-potential in the lenses became more reduced from June, indicating a protective mechanism against oxidative stress and cataract. The number of fish with melanin spots was high in June and decreased in August and October, but the size and intensity of the remaining spots increased in the same period. The change in vitamin C and E concentrations, cataract and glutathione metabolism during spring and early summer, indicate that the fish became oxidized in this period, while malon-di-aldehyde (MDA) and astaxanthin concentrations did not support the hypothesis. There are too few data to draw conclusions on possible effects of oxidative stress on melanin spots.
Authors
Christina Hoerterer Jessica Petereit Gisela Lannig Johan Johansen Luis E. C. Conceição Bela H. BuckAbstract
One part of aquaculture sustainability is reducing the environmental footprint of aquaculture feeds. For European aquaculture, this means finding feed ingredients that are produced within the economic community, and that are not in conflict with human consumption. This is especially challenging when formulating diets for carnivorous fish such as turbot with low tolerance to fishmeal replacement that are both nutritious and economically and environmentally sustainable. Therefore, we investigated the effects of two novel and innovative feed formulation concepts on growth and feed performance and the nutritional status of market-sized turbot in a recirculating aquaculture system. In a 16-week feeding trial, 440 turbot (300 ± 9 g) were fed twice a day with a control diet (CTRL), based on a commercial formulation, and four experimental diets. The experimental diets were designed to investigate the effects of two formulations concepts based on sustainable terrestrial plant proteins (NoPAP) or processed animal proteins (PAP) and of 30% and 60% fishmeal replacement with emerging feed ingredients (fisheries by-products, insect meal and fermentation biomass). Turbot from the CTRL group had a similar growth and feed performance than fish fed the NoPAP30 formulation, with a significant decline of performance in the fish fed both PAP formulations and the NoPAP60. Comparing the two formulation concepts with each other the voluntary feed intake and protein efficiency ratio on tank basis as well as the individual weight gain and relative growth rate was significantly higher in the fish from the NoPAP groups than PAP groups. Furthermore, the apparent digestibility of nutrients and minerals was significantly reduced in the fish fed with the diets with 30% and 60% fishmeal replacement level compared to the fish from the CTRL group. In conclusion, the performance of the fish fed the NoPAP30 formulation concept highlights the potential of the used combination of sustainable ingredients, such as fisheries by-products, insect meal, microbial biomass and plant protein for turbot. Furthermore, this study shows that turbot has a higher tolerance to the incorporation of plant and insect protein than of processed animal protein.