Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

It is not known to what degree growth and fruit yield are source-limited in everbearing strawberry plants. The growth and yield performance effect of bi-weekly removal of all runners and/or one or two leaves during the cropping season of tunnel-grown ‘Favori’ everbearing strawberry plants was determined. Plants were grown on a table-top system in an open plastic tunnel under natural light conditions in Norway from May to October. Removal of runners and leaves was bi-weekly from 5 June until 25 September. Fruits were harvested from 5 July to 7 October. Bi-weekly runner removal increased total and marketable yield and number and size of fruits, while increasing leaf thinning had the opposite effects. However, none of the treatments affected the fruit number and yield of the first fruiting flush. The treatments did not affect realization of the yield potential of the plants at planting, whereas the continued floral initiation and fruit growth were enhanced by runner removal. Increasing leaf thinning had the opposite effects. Both floral initiation and fruit growth in heavily flowering and fruiting everbearing strawberry are source-limited owing to the high fruit/leaf ratio of such plants.

To document

Abstract

The main objective was to evaluate to what extent subsoil compaction on an arable clay soil (Stagnosol (Drainic)) may be alleviated after 5 years under the climate conditions in South-East Norway. Therefore, field plots which had been ploughed and under minimum tillage were compacted through wheel impact (10x) with a 6.6 Mg wheel load. Samples were taken from the ‘compacted’ and ‘non-compacted reference’ treatments at depths of 40 and 60 cm both before and directly after compaction and again 5 years later. The soil physical parameters revealed that pre-compression stress, bulk density, air capacity, air conductivity and saturated hydraulic conductivity at depths of 40 and 60 cm were impaired by compaction, especially under ploughed. After 5 years, bulk density and pre-compression stress remained almost unchanged, while air capacity, air conductivity and saturated hydraulic conductivity had increased at both the 40 and 60 cm depth on both plots as compared to the compacted state and to R for the most part, indicating the recovery of the soil structure in the subsoil. The compaction status evaluated by the ‘compaction verification tool’ indicates the relative reduction of ‘harmful soil compaction’ (after wheel impact) with a change towards ‘slightly harmful compaction’ for the most part with an as yet limited saturated hydraulic conductivity at both depths after 5 years.

Abstract

Norwegian pear (Pyrus communis L.) production has been in decline for the last 25 years. This was mainly because of old cultivars, with low yields and poor consumer appeal, could not compete against strong competition from imported pears, mainly ‘Conference’. Since 1994, the Norwegian breeding company, Graminor Ltd., has released several new pear cultivars, which have been evaluated at NIBIO Ullensvang, western Norway. The first trial was planted in 1999 and included the Graminor Ltd. cultivars: ‘Ingeborg’, ‘Fritjof’ and ‘Anna’, which were bred by the Norwegian University of Life Sciences. In 2002, a second trial was planted including Graminor Ltd. cultivars: ‘Kristina’, ‘Ingrid’ and ‘Celina’ and these were compared against a control, ‘Clara Frijs’. All scion cultivars were grafted on the semi-vigorous rootstock ‘Brokmal’ and grown for 8 years. In both trials, full bloom (~80% of flowers open) took place between 7 May + 3 days and 15 May + 4 days. Flowering was however, completed within a 7-day period in any one year, ensuring adequate overlap in flowering time between all cultivars. Over the final 4-year period all cultivars were evaluated, ‘Anna’, ‘Fritjof’, ‘Kristina’ and ‘Ingeborg’ all had moderate cumulative yields (64.7, 66.2, 36.1, and 30.4 kg·tree-1, respectively). Fruit weight (212 to 183g) and quality of all these cultivars was acceptable (11.2% ≤ TSS ≤ 11.8%; 0.16% ≤ acidity ≤ 0.22%). However, ‘Fritjof’ had many misshapen fruit and exhibited pre-harvest shriveling in several instances making it unacceptable for commercial plantings. ‘Clara Frijs’ and ‘Celina’ cumulative yields were low (12.5 and 21.2 kg per tree, respectively) and fruit were also small (172 to 161 g, respectively). However, due to the attractive cerise-blush ‘Celina’ (trademarked QTee®) pear is now widely planted in Norway and abroad and grafted on Quince rootstocks.

To document

Abstract

Performance of the Quince rootstocks ‘Adams’, ‘C’ and ‘Eline®’, all grafted with pear cultivars ’Celina’, ‘Ingeborg’ and ‘Kristina’, were compared at the experimental farm of NIBIO Ullensvang, western Norway. Tree vigour, yield, fruit size and fruit quality were evaluated annually for the first seven years. No severe winter damage was observed during these years and none of the trees died. After seven years there were no significant differences in tree size in ‘Celina’ and ‘Ingeborg’ grafted on the different rootstocks, while trunk diameter increase of ‘Kristina’ was significantly larger on ‘Eline®’ than on ‘C’ and intermediate on ‘Adams’. Flower development and fruit set were not affected by rootstocks in any of the three scion cultivars. On average, mature fruit were picked during mid to end September and the trees began producing a small crop in the third season. No alternate bearing pattern was identified. For ‘Celina’ and ‘Kristina’ yield was similar for trees on all three rootstocks. Cumulative yields for the first five cropping years were 31.3 kg tree‑1 for ‘Celina’, 25.9 kg tree‑1 for ‘Kristina’ and 19.4 kg tree‑1 for ‘Ingeborg’. ‘Celina’ produced the highest total number of fruit when grafted on ‘Adams’ or ‘C’. Trees on ‘Eline®’ produced a significantly lower number of fruit in both ‘Celina’ and ‘Ingeborg’. On average for all cultivars, no significant effect of rootstock was observed on average fruit weight during these 5 production years. ‘Eline®’ on average yielded fruit of 165 g for all cultivars while for ‘Adams’ and ‘C’ it was 162 g. Soluble solids concentration was high (11.2% on average) but was not significantly affected by rootstocks. Fruit acidity was similar for all quince rootstocks (0.19-0.21%). The fruit development period between full bloom and harvest showed a clear inverse linear relationship with the average daily temperature. In conclusion, because the trees have not reached their full production none of these quince rootstocks can yet be recommended as the preferred rootstock for pear growing in a cool, mesic northern climate.

To document

Abstract

The Norwegian newly bred pear cultivar, ‘Celina/QTee®’, which was launched in 2010, has been released from the Norwegian breeding program. It derived from the combination ‘Colourée de Juillet’ × ‘Williams’. In Norway the flowering is medium to late in May and it ripens in the beginning of September. It has large attractive fruits with red blush and good fruit quality, storability and shelf life. Significant areas of ‘Celina’ cultivars are planted in other countries, mainly Europe. Generally, unfavourable environmental conditions for pear pollination during the Nordic spring can have a very negative effect on the yields in Norwegian pear orchards. Therefore, it is of considerable importance to interplant multiple suitable pollinizer genotypes together with the main cultivar. In order to find the right pollinizers besides following biology of fertilization, pollinizing efficacy using microsatellites were studied at NIBIO Ullensvang, western Norway. In this study, during 2017, seeds from fruits of the pear cultivar ‘Celina’ were extracted. The fruits were randomly harvested from five different orchards located in Ullensvang including NIBIO. Alongside the seeds, leaves were taken from the mother cultivar (‘Celina’) and five pear pollinizer cultivars presented in the orchards (‘Fritjof’, ‘Kristina’, ‘Clara Frijs’, ‘Herzogine Elsa’ and ‘Anna’). Using 11 microsatellite markers, a genetic characterization was conducted on both the seeds and the leaves. The obtained SSR profiles were used for gene assignment analyses. The results of the genetic analyses indicate a very heterogeneous situation regarding pollination. In conclusion, ‘Fritjof’, ‘Kristina’, ‘Clara Frijs’, ‘Herzogine Elsa’ and ‘Anna’ pears had different pollen contributions as pollinizers to ‘Celina’ depending on the investigated orchard. Only one cultivar (‘Herzogine Else’) could be singled out as a major pollen contributor in more than two orchards. Genetic analyses will be repeated in the same orchards, during an additional season, after which more conclusive results will be available.

To document

Abstract

In the Arctic part of the Nordic region, cultivated crops need to specifically adapt to adverse and extreme climate conditions, such as low temperatures, long days, and a short growing season. Under the projected climate change scenarios, higher temperatures and an earlier spring thaw will gradually allow the cultivation of plants that could not be previously cultivated there. For millennia, Pea (Pisum sativum L.) has been a major cultivated protein plant in Nordic countries but is currently limited to the southern parts of the region. However, response and adaptation to the Arctic day length/light spectrum and temperatures are essential for the productivity of the pea germplasm and need to be better understood. This study investigated these factors and identified suitable pea genetic resources for future cultivation and breeding in the Arctic region. Fifty gene bank accessions of peas with a Nordic landrace or cultivar origin were evaluated in 2-year field trials at four Nordic locations in Denmark, Finland, Sweden, and Norway (55° to 69° N). The contrasting environmental conditions of the trial sites revealed differences in expression of phenological, morphological, crop productivity, and quality traits in the accessions. The data showed that light conditions related to a very long photoperiod partly compensated for the lack of accumulated temperature in the far north. A critical factor for cultivation in the Arctic is the use of cultivars with rapid flowering and maturation times combined with early sowing. At the most extreme site (69°N), no accession reached full maturation. Nonetheless several accessions, predominantly landraces of a northern origin, reached a green harvest state. All the cultivars reached full maturation at the sub-Arctic latitude in northern Sweden (63°N) when plants were established early in the season. Seed yield correlated positively with seed number and aboveground biomass, but negatively with flowering time. A high yield potential and protein concentration of dry seed were found in many garden types of pea, confirming their breeding potential for yield. Overall, the results indicated that pea genetic resources are available for breeding or immediate cultivation, thus aiding in the northward expansion of pea cultivation. Predicted climate changes would support this expansion.

To document

Abstract

Mechanistic models are useful tools for understanding and taking account of the complex, dynamic processes such as carbon (C) and nitrogen (N) turnover in soil and crop growth. In this study, the EU-Rotate_N model was first calibrated with measured C and N mineralization from nine potential fertilizer resources decomposing at controlled soil temperature and moisture. The materials included seaweeds, wastes from the food industry, food waste anaerobically digested for biogas production, and animal manure. Then the model’s ability to predict soil and crop data in a field trial with broccoli and potato was evaluated. Except for seaweed, up to 68% of added C and 54–86% of added N was mineralized within 60 days under controlled conditions. The organic resources fell into three groups: seaweed, high-N industrial wastes, and materials with high initial content of mineral N. EU-Rotate_N was successfully calibrated for the materials of industrial origin, whereas seaweeds, anaerobically digested food waste and sheep manure were challenging. The model satisfactorily predicted dry matter (DM) and N contents (root mean square; RMSE: 0.11–0.32) of the above-ground part of broccoli fertilized with anaerobically digested food waste, shrimp shell pellets, sheep manure and mineral fertilizers but not algal meal. After adjusting critical %N for optimum growth, potato DM and N contents were also predicted quite well (RMSE: 0.08–0.44). In conclusion, the model can be used as a learning and decision support tool when using organic materials as N fertilizer, preferably in combination with other models and information from the literature.