Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

To document

Abstract

The accumulation of petroleum-based plastics causes economic and environmental concerns which necessitate a comprehensive search for biodegradable packaging materials. Brewer's spent grain (BSG) is an interesting by-product, which is one of the main wastes of beer production in Europe. BSG could offer added value in the food packaging sector owing to the significant amount generated annually, high biomaterials content, and low market value. Herein, the significance of various biorefinery techniques (physical, chemical, and biological) for the extraction of high-value products (such as protein, cellulose, hemicellulose, lignin, and phenolic compounds) from the BSG are comprehensively examined. BSG-derived biodegradable films and coatings for food packaging are critically evaluated. Finally, techno-economics, environmental impacts, energy consumption, regulations, challenges, and prospects are also critically evaluated. The best biorefinery system necessitates a balance between extraction efficiency, energy consumption, environmental impact, tangible upscaling, and operating cost. The mechanical dewatering of BSG before extraction, including the physical pretreatments, utilization of green solvents, the integration of the solvent recovery system, and the combination of two or more biorefinery techniques could reduce the energy requirements, greenhouse gas emissions, and increase the recovery yield of biomaterials. Cellulose, lignin, xylitol, and arabinoxylan are recommended as the most promising components from BSG for food packaging applications.

To document

Abstract

The marine food-processing industries were producing large quantities of shell wastes as a discard. Currently, this waste material was underutilized and leads to the landfill as a significant environmental issue. The outer shells or exoskeletons of mollusks serve as the best source of chitin. Three different allomorphs of chitin (γ, β, and γ) were extracted from different species of crustaceans, mollusks, and fungi. β-Allomorphs predominantly exist in the shells of mollusks. β-Chitin and its deacetylated product chitosan has been utilized for its special characteristic features, including biocompatibility, environmental friendly, and nontoxic properties. The extraction of β-chitin and chitosan from the mollusk shell waste were evaluated in this work. Hence, this review aims to explore edible mollusk shell waste sources and its suitable extraction techniques, characterizations, and functional properties of mollusk-based β-chitin and chitosan. Further, the genetic pathway of synthesizing mollusk chitin was discussed. The entire life cycle assessment with techno-economic aspects were extrapolated to study the bottlenecks and tangible solution for the industrial upscaling of obtaining β-chitin and chitosan from the edible mollusk shell waste have been reviewed herein.

Abstract

Aquaculture of marine macroalgae is an important part of the world’s food production. In Norway, the fast-growing kelp Saccharina latissima has the highest potential for industrial biomass production. Aquaculture in the country’s fjords is economically more viable for SMEs, supports the development of IMTA and could allow the industry to approach the projected 20 million tons by 2050. However, S. latissima is exposed to a considerable decline in seawater salinity during the growth season, which affects the biomass production. This presentation shows results of industrial R&D projects in which the presence of “low-salinity tolerant” strains of S. latissima in a North Norwegian fjord and their responses to the seasonal salinity decline was studied. In a laboratory-based common garden experiment, sporophytes of S. latissima from different locations in Skjerstadfjorden were cultivated under different salinities for six weeks. Growth and photosynthetic parameters were measured to understand their physiological responses to salinity stress. Then their F1 generation were seeded on ropes and deployed at a commercial aquaculture site in Skjerstadfjorden to study strain-specific differences in biomass production and yield, optimal growth depths and biochemical composition of S. latissima. In addition, the aquaculture site was characterised by measurements of physical and chemical parameters. The projects’ results will help North Norwegian macroalgae producers to improve the biomass production and biochemical composition of S. latissima. These findings could lay the foundation for the development of breeding programmes in Norway and could demonstrate the macroalgae producers in Norway the possibility of establishing aquaculture in fjords.

Abstract

The fungus Neonectria ditissima causes Fruit Tree Canker on apple and pear. In the past years the disease has become a threat for Swedish and Northern European apple production since devastating outbreaks destroy large numbers of trees. To date, no complete genetic resistance to N. ditissima is known in apple but genotypes (scion cultivars and rootstocks) differ greatly in their level of partial resistance. Furthermore, the degree of susceptibility of a scion cultivar may be influenced by the rootstock it is grafted to. Thus, we aimed to improve our understanding of genetically determined differences in resistance among rootstocks and clarify cultivar/rootstock interactions with regards to canker resistance. For that, we evaluated differences in resistance to fruit tree canker in 24 rootstocks (including two M9 clones). We also evaluated differences in resistance of four most widely grown in Sweden scion cultivars grafted to four common rootstocks differing in vigour. The new knowledge will be useful for growers and breeders to minimize canker damages, prevent loss of the fruit-bearing surface in the orchards, save time and money for the growers.

To document

Abstract

Nutrient uptake and transport depend on the root system of a tree. Various apple rootstock genotypes may interact fruit tree nutrition. In 2017, two multi-location apple rootstock trials were established at 16 sites in 12 European countries. The evaluations are performed by members of the EUFRIN (European Fruit Research Institute Network) Apple & Pear Variety & Rootstock Testing Working Group. Following rootstocks are included in the tests: G.11, G.41, G.202 and G.935 (US), EM_01, EM_02, EM_03, EM_04, EM_05 and EM_06 (UK), 62-396-B10® (Russia), P 67 (Poland), NZ-A, NZ-B, NZ-C and NZ-D (New Zealand) and Cepiland-Pajam®2 as control. The effect of rootstocks on the mineral content of leaf and fruit was studied at the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry in 2019-2020. The leaf and fruit mineral concentration of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and leaf mineral content of copper (Cu), zinc (Zn), iron (Fe), manganese (Mn) and boron (B) were measured. Significant rootstock effect was established on leaf P, Mg, Zn, Mn, B, and fruit Ca and Mg content. Rootstocks EM_01 and G.41 were the most efficient in leaf mineral uptake, while G.935 had the lowest content of all leaf macro nutrients. Rootstocks EM_06 and P 67 were the most efficient in fruit mineral uptake, while EM_02 had the lowest content of three nutrients. Current research reveals differences among rootstocks and their capacity to absorb separate minerals and enables creation of rootstock specific nutrition management.

To document

Abstract

Six sweet cherry cultivars and two advanced selections of Gisela 5 rootstock were tested in 2015–2021 at the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry. Fruit trees were planted at distances of 4.5 × 2.5 m and trained as spindles. Orchard floor management included frequently mown grass in alleyways with herbicide strips along tree rows. Cultivars ‘Mindaugė’ and ‘Irema BS’ were the most vigorous at the end of the seventh leaf. Their trunk diameter achieved 11.6 cm. The ‘Merchant’ cultivar had the smallest trunk diameter—9.3 cm. The average yield in 2018–2021 ranged from 2.75 t/ha for ‘Vega’ to 8.73 t/ha for ‘Regina’. Cultivars ‘Regina’, ‘Sunburst’, ‘Irema BS’ and ‘Merchant’ had the highest cumulative yield efficiency of 0.440–0.503 kg/cm2 with respect to the trunk cross-section area (TCSA). The least productive cultivar ‘Vega’ produced fruits of the highest average weight—9.9 g. Fruits of ‘Regina’ and ‘Sunburst’ were large as well—8.8–9.1 g. ‘Irema BS’ fruits had the highest soluble solids content (SSC)—20.2%. The lowest SSC was recorded in ‘Merchant’ and ‘Sunburst’ fruits—14.7–15.8%. The yield of advanced selection, No. 102, equaled to the yield of cv. ‘Regina’. No. 102 had a high fruit weight, and fruits were distinguished by attractiveness and taste.