Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2015

To document

Abstract

Predicting how human induced vegetation changes affect ecosystems and their biological communities is one of the most urgent tasks in ecology. In Norwegian lowlands one of the main threats to biodiversity is abandonment of low intensive land-use areas. Effects of changed land-use on vegetation are generally made by assessing the effect on the number of species as indicators of biodiversity. However, community structure changes and ecosystem processes are not necessarily well described by this biodiversity indicator only. Functional trait responses might better predict structures and processes than species richness. Therefore, studies of functional traits and biodiversity indexes of these might provide deeper insight. In addition, to predict reliable future vegetation changes, multifactorial determinants have to be considered as vegetation is not driven by one determinant only.

To document

Abstract

Effects of different environmental factors (origin, climate, fertilization and soil properties) on berry nutritional quality were studied in eight forest fields of bilberry (Vaccinium myrtillus) in Northern-, Mid- and Southern Norway. No clear trend between locations could be found, however untargeted multivariate analysis of metabolite profiles revealed clear segregation patterns between locations. Anthocyanin, and phenolics content, and titratable acidity were significantly affected by mineral fertilization (Mid-Norway), while organic fertilization did not show any significant effects (Northern Norway). Bilberry chemical composition was affected by harvest time point, as indicated by a potentially higher nutritional quality regarding the content of phytochemicals when harvesting at mid or towards the end of the production season (Southern Norway). Regional and annual climate had strongest impact on the nutritious content of bilberries. Significant differences were found between locations, however previous findings on increasing anthocyanin content with latitude were not confirmed due to environmental impacts confounding the population effects.

To document

Abstract

Europe’s and the World’s northernmost agriculture is very vulnerable to harsh overwintering conditions. It is important from both an economic and societal standpoint to have accurate methods of predicting the severity and impact of the current snow season. Technology has advanced to enable such measurements to be regularly recorded but despite this, a detailed assessment, involving remote sensing , of the impacts of various types of snow season on agricultural yields in northernmost Europe has not previously been undertaken. Here we characterize variation in snow types and concomitant soil frost and ground-ice accumulation at a Norwegian sub-Arctic, maritime-buffered site (Tromsø, Troms County, 69 °N) during the period 1989/90 to 2013/14 and analyse how winter conditions affect agricultural productivity (both measured in the field and using remote sensing). These data were then used to build important predictive modelling approaches. In total, five contrasting types of snow season were identified, from snow-rich with no soil frost and no ground-ice to low snow and considerable soil frost and ground-ice. Conditions of low snow and low soil frost and ground-ice that result from numerous warming events were rare within the time period studied but are predicted to become the dominant snow season type. Agricultural productivity was lowest and claim settlements paid to farmers were highest after winters with high accumulation of plant-damaging, hermetic ground-ice. Deep soil frost per se did not affect primary productivity. Overall, our results together with information from other sources, suggest that icy, low snow conditions are the most challenging of all seasonal types for both the environment and livelihoods in sub-Arctic Norway. Winters with extremely deep snow also cause considerable problems. As winters are expected to warm more than summers, it is likely that the winter climate will become an even stronger regulator of northern primary productivity. To better understand the physical and biological effects of the changing winter climate, there is a requirement for continued and increasing monitoring of winter processes, especially related to frost and ice in the rhizosphere, as this is currently not well covered in national monitoring programs. Continued monitoring will enable further refinement of predictions and will support the better community planning for greatest agricultural benefit. climate change, crop yield, ice, NDVI, plant mortality, snow dynamics, winter climate

Abstract

High northern latitudes are increasingly exposed to the combination of extreme winter climate and deposition of long-distance dispersed nitrogen pollution. The nature in the north is vulnerable, and these combined pressures may over time drive changes in plant composition and carbon uptake.

To document

Abstract

High northern latitudes are increasingly exposed to the combination of extreme winter climate and deposition of long-distance dispersed nitrogen pollution. The nature in the north is vulnerable, and these combined stresses may over time affect the composition of plant species and carbon uptake. How will North-Norwegian ecosystems tolerate unstable winters and nitrogen pollution?