Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

From 2017, the Norwegian River Monitoring Programme (Elveovervåkingsprogrammet) replaced the former RID programme “Riverine inputs and direct discharges to Norwegian coastal waters” which had run continuously since 1990. The present report provides the current (2017) status and long-term (1990-2017) water quality trends in the 20 rivers included in the main programme.

To document

Abstract

The effects of climate change on oligotrophic rivers and their communities are almost unknown, albeit these ecosystems are the primary habitat of the critically endangered freshwater pearl mussel and its host fishes, salmonids. The distribution and abundance of pearl mussels have drastically decreased throughout Europe over the last century, particularly within the southern part of the range, but causes of this wide-scale extinction process are unclear. Here we estimate the effects of climate change on pearl mussels based on historical and recent samples from 50 rivers and 6 countries across Europe. We found that the shell convexity may be considered an indicator of the thermal effects on pearl mussel populations under warming climate because it reflects shifts in summer temperatures and is significantly different in viable and declining populations. Spatial and temporal modeling of the relationship between shell convexity and population status show that global climate change could have accelerated the population decline of pearl mussels over the last 100 years through rapidly decreasing suitable distribution areas. Simulation predicts future warming-induced range reduction, particularly in southern regions. These results highlight the importance of large-scale studies of keystone species, which can underscore the hidden effects of climate warming on freshwater ecosystems.

To document

Abstract

Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 =  0.76; Nash–Sutcliffe modeling efficiency, MEF  =  0.76) and ecosystem respiration (ER, r2 =  0.78, MEF  =  0.75), with lesser accuracy for latent heat fluxes (LE, r2 =  0.42, MEF  =  0.14) and and net ecosystem CO2 exchange (NEE, r2 =  0.38, MEF  =  0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value.

To document

Abstract

The potential impact of silver nanoparticles (Ag NPs) on aquatic organisms is to a large extent determined by theirbioavailability through different routes of exposure. In the present study juvenile Atlantic salmon (Salmo salar) were exposed todifferent sources of radiolabeled Ag (radiolabeled110mAg NPs and110mAgNO3). After 48 h of waterborne exposure to 3mg/Lcitrate stabilized110mAg NPs or110mAgNO3, or a dietary exposure to 0.6mg Ag/kg fish (given as citrate stabilized or uncoated110mAg NPs, or110mAgNO3), Ag had been taken up in fish regardless of route of exposure or source of Ag (Ag NPs or AgNO3).Waterborne exposure led to high Ag concentrations on the gills, and dietary exposure led to high concentrations in thegastrointestinal tract. Silver distribution to the target organs was similar for both dietary and waterborne exposure, with the liveras the main target organ. The accumulation level of Ag was 2 to 3 times higher for AgNO3than for Ag NPs when exposure wasthrough water, whereas no significant differences were seen after dietary exposure. The transfer (Bq/g liver/g food or water)from exposure through water was 4 orders of magnitude higher than from feed using the smallest, citrate-stabilized Ag NPs(4 nm). The smallest NPs had a 5 times higher bioavailability in food compared with the larger and uncoated Ag NPs (20 nm).Despite the relatively low transfer of Ag from diet to fish, the short lifetime of Ag NPs in water and their transfer to sediment,feed, or sediment-dwelling food sources such as larvae and worms could make diet a significant long-term exposure route.

To document

Abstract

Arbuscular mycorrhizal fungi (AMF) colonise roots of most plants; their extra-radical mycelium (ERM) extends into the soil and acquires nutrients for the plant. The ERM coexists with soil microbial communities and it is unresolved whether these communities stimulate or suppress the ERM activity. This work studied the prevalence of suppressed ERM activity and identified main components behind the suppression. ERM activity was determined by quantifying ERM-mediated P uptake from radioisotope-labelled unsterile soil into plants, and compared to soil physicochemical characteristics and soil microbiome composition. ERM activity varied considerably and was greatly suppressed in 4 of 21 soils. Suppression was mitigated by soil pasteurisation and had a dominating biotic component. AMF-suppressive soils had high abundances of Acidobacteria, and other bacterial taxa being putative fungal antagonists. Suppression was also associated with low soil pH, but this effect was likely indirect, as the relative abundance of, e.g., Acidobacteria decreased after liming. Suppression could not be transferred by adding small amounts of suppressive soil to conducive soil, and thus appeared to involve the common action of several taxa. The presence of AMF antagonists resembles the phenomenon of disease-suppressive soils and implies that ecosystem services of AMF will depend strongly on the specific soil microbiome.