Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2007

Abstract

Model simulations show that an increased frequency in storms and drought periods may result in more frequent and shorter outbreaks of bark beetles. Warmer summers can result in two bark beetle generations per summer instead of one, giving bark beetles the opportunity to attack forests twice in a single year.

Abstract

The detection in 1999 of the pine wood nematode (PWN), Bursaphelenchus xylophilus, in Portugal triggered survey activities in many European countries. With the assumption that PWN would reach frequency 10 times lower than the native B. mucronatus and the requirement of a 95 % confidence limit suggested 2 995 samples to be required for a safe statement on the absence of PWN from the territory surveyed. Samples were taken from 10 circular areas with 50 km diameter erected from a point of import of risk materials. In the period 2000-2006 3 165 wood samples, 2 880 from Pinus sylvestris, 279 from Picea abies and 6 from unknown wood, were collected from 446 logging sites, in 84 municipalities and 13 counties. Of the total material 85 % of the samples came from cutting wastes, timber or lying trees. Wood showing signs of insect activity (incl. Monochamus) formed 73 % of the total material. Nematodes were recorded in 85 % of the samples. The order Rhabditida was most frequent, followed by the orders Aphelenchida, Tylenchida and Dorylaimida. Rhabditid nematodes were equally frequent in pine and spruce, while Aphelenchida (Aphelenchus, Aphelenchoides, Cryptaphelenchus, Seinura and Bursaphelenchus) and Tylenchida (Filenchus, Lelenchus, Ditylenchus, Deladenus and Nothotylenchus) tended to be more common in pinewood. Aphelenchoides was the most common genus. The genus Bursaphelenchus occurred in 1 % of the samples. B. mucronatus was detected in 0,3 % of the samples and most often in cutting waste of pine. The pine wood nematode (PWN), B. xylophilus, was not detected in this survey. The unexpected low natural occurrence of B. mucronatus indicates that the number of potential niches for PWN also is lower than expected, and hence it will be necessary to continue this surveillance program to reach 10 000 samples. The present zone sites in central and south-eastern Norway will be supplemented with 1-2 zone sites in southwestern region of the country. In the future these zone sites will function as permanent observation areas. Care will also be taken to collect all samples from detached wood with signs of Monochamus activity.

2006

Abstract

Bark beetles and associated phytopathogenic fungi elicit defence responses in conifers that may interfere with beetle establishment and development. Norway spruce is serving as a useful model species for studies of induced defences elicited by beetle attacks, fungal inoculation, and treatment with chemical elicitors.When trees are pretreated with a sublethal dose of fungal inoculations or with the phytohormone methyl jasmonate they become much more resistant to subsequent bark beetle attacks or artificial mass inoculations with fungi. This induced disease resistance follows dose-response dynamics, is nonspecific with respect to the pretreatment organism, appears to be nonsystemic, takes weeks rather than days to become activated, and can also be activated by mechanical wounding alone.Application of methyl jasmonate to Norway spruce stems induces a massive increase in terpene levels and external resin flow on the stem, whereas no increase is observed in soluble phenolics. Methyl jasmonate-application also leads to significantly less bark beetle colonization, with shorter parental galleries and fewer eggs laid in treated bark. There were also reductions in the number of beetles produced and the mean dry weight per beetle in methyl jasmonate-treated bark. Furthermore, fewer beetles were attracted to conspecifics tunneling in MJ-treated bark.The exact mechanisms responsible for induced resistance in Norway spruce and other conifers have not been determined, but inducible anatomical defense responses such as changes in polyphenol-containing parenchyma cells (PP cells) in the phloem and induction of traumatic resin duct formation in the sapwood seem to play an important role.