Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2006

Abstract

Results from a literature review on pinewood ecology, silviculture, genetics, aspects of history and forest resources of Scots pine (Pinus sylvestris L.) in western Norway are presented. The pinewoods cover 40 per cent of the forested land, 0.31 million ha. During the last 75 years, the area has increased by 17 per cent and the growing stock has risen from 10 to 34 million m3. The impact of man in previous times was very marked, and has had a significant influence on the present forest conditions. The pronounced climatic gradients mixed with the topographic variation - from the coastal plains via the fjord systems to the high mountains - is reflected in rather steep gradients in the pine forest vegetation. Various floristic elements can be distinguished, from oceanic via the suboceanic in the outer islands to the thermophytic, boreonemoral and boreal elements in the inner fjord districts and valleys. The introduction of spruce (Picea spp.) plantations on 10-15 per cent of former native pine forests has not negatively affected the bird fauna at the landscape scale. Although not particular species rich, the pine forests harbour species usually not found in other forest types. So far, most work in the field of silviculture and forest ecology in the pinewoods of West Norway has been in the form of case studies. Implications of the results for forestry in the region are briefly discussed.

2005

Abstract

Forest ecosystems provide many deliverables or benefits to society. The most obvious one is wood for the forest industry. Other benefits include berries, hunting, and recreation. More recently recognised benefits are environmental services such as carbon sequestration, water protection and biodiversity, which are without an immediate market value.On the other hand, there are pressures (e.g. climate change, air pollution, exploitation, and costs) on the ecosystem that may hamper the wood production or other benefits......

Abstract

The potential as indicators of species richness were investigated for 178 species belonging to six ecologically defined species groups (epiphytic bryophytes on nutrient-rich bark, epiphytic macrolichens on nutrient rich bark, pendant lichens on conifer trees, bryophytes on siliceous rocks, bryophytes on dead conifer wood, and polypore fungi on dead conifer wood), using species data from 0.25 ha plots from three different coniferous forest areas (ca. 200 ha each). A species was defined as a potential indicator species for a species group within a study area if its distribution was statistically significantly nested within the species-plot matrix ranked according to species richness, and if the plot frequency of the species was less than 25%. Only two species were identified as potential indicators within all three areas and on average ≈80% of the potential indicator species were lost from one area to another. The results indicate that inconsistency between areas in the species’ frequency distributions and their position in nested hierarchies may strongly reduce the general predictive power of indicator species of species richness, even if significantly nested patterns are found at the community level. We suggest that indicators related to amount and quality of habitats may be an alternative to lists of indicator species of species richness.