Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2009

2008

Abstract

Nitrogennedfallet i skog virker gjødslende på skog, og fører derfor til økt karbonbinding. Så selv om nitrogennedfallet er en forurensning, så har det den positive effekt at det bidrar til å motvirke klimaendringene. Spørsmålet er hvor stor denne effekten er. Vi har i vårt EU/Forest Focus-prosjekt ”Assessment of the relative importance of nitrogen deposition, climate change and forest management on the sequestration of carbon at intensive monitoring plots in Europe” estimert denne effekten til å være omkring 30 kg ekstra bundet karbon for hver kg nitrogen som blir avsatt i skog...

2007

Abstract

Forest health monitoring may be done with remote sensing. Satellite based SAR is one promising technology as it works day and night and with cloud cover, and because it is sensitive to 3D properties. We here apply an interferometry based XDEM approach, where we assumed that an increasing defoliation would cause an increasing X band penetration downwards into the canopy layer, and that the penetration depth is a function of the amount of leaf area index (LAI) penetrated. We had at hand data for a 4 km2 forest area, having an SRTM X and C band SAR data set from 2000; a discrete-return laser scanning data set from 2003; and ground based measurements of some hundred trees and a forest stand map from 2003. We initially adjusted the XDEM and CDEM using elevation data from some agricultural fields nearby the forest using an official, Norwegian DTM data base having a 25mx25m spatial resolution. All further analyses were carried out on a 10mx10m grid. With the laser data we obtained a DTM and a canopy surface model (CSM), where the latter was set to the 75 percentile of the DZ data in each grid cell. The X band penetrated about six m downwards into the canopy layer, which means that for all grid cells having a forest canopy lower than six m, the XDEM was around zero. With an increasing DSM from six m upwards, the DSM could be approximated by the linear function DSM = 6 + 0.91*XDEM, having a RMSE of 4.0 m. The laser data provided the possibility to estimate LAI in every grid cell and at any height in that cell. For every grid cell, an LAI value was estimated for the forest canopy being above the XDEM height, using the method of Solberg et al (2006), where LAI = C * ln(N/Nb), where LAI is effective LAI above a given height; C is a constant calibrated from ground based measurements with the value 2.0, N is the total number of laser pulses; and Nb is the number of laser pulses below the given height. The median LAIaboveX value was 1.42, and 25-75 percentile values being 0.86-2.15. Also, in order to have a more homogeneous data set we redid the analyses using only spruce dominated stands, and excluding all grid cells at stand borders. The latter was set as grid cells that had neighbour grid cells in a neighbour stand. This had however, only a minor influence on the results.

Abstract

The REMFOR project evaluates remote sensing data and methods for monitoring forest health using variation in leaf area index (LAI) as a primary measure of defoliation. A large-scale pine sawfly outbreak in Norway serves as a test case. An LAI map of the study area was derived from airborne LIDAR measurements before and after the insect attack to serve as ground truth for satellite image analysis. The method predicts LAI from laser penetration rates through the canopy layer in accordance with the Beer- Lambert law calibrated with point measurements of LAI with LICOR LAI-2000. Comparing two cloud-free SPOT scenes from September 2004 and September 2005 shows obvious visual patterns of defoliation in pine forests from the 2005 outbreak. Preliminary analysis shows that the insect defoliation caused an increase in middle-infrared (SPOT band4) reflectance and a decrease in SPOT NDVI, and both these responses may be used as a reasonable predictor of LAI loss as derived from laser scanning. MODIS NDVI data were gathered for the area over the period 2000-2006, and the Timesat algorithm is used to smooth the seasonal variation. The insect attack is evident from the smoothed NDVI data both as a reduction in the summer mean value, and as an alteration of the seasonal profile during the larvae feeding period in June and July. REMFOR also encompasses a range of other remote sensing data types, including GLAS LIDAR, SAR and hyperspectral data from both airborne and satellite platforms (e.g. Hyspex and Hyperion). Landsat TM is used to generate a tree species map.

2006

Abstract

Growing stocks of trees in Europe have increased in a magnitude that is significant in terms of carbon (C) sink strength. Estimates of the soil C sink strength that this increased stock of trees may have induced on a regional scale are scarce, uncertain and difficult to compare. This illustrates the need for a widely applicable calculation method. Here, we calculate a C budget of productive forest in southeast Norway based on forest inventory information, biomass expansion factors (BEF), biomass turnover rates and the dynamic soil model Yasso. We estimate a 29% increase (112-145 Tg) of C in biomass between 1971 and 2000, and estimate the associated increase of C in soils (including dead wood) to be 4.5% (181-189 Tg). The C sink strengths in biomass and soils (including dead wood) in 1990 are 0.38 and 0.08 Mg ha(-1) yr(-1), respectively. Estimated soil C density is 58 Mg C ha(-1) or ca 40% of measured soil C density in Norwegian forest soils. A sensitivity analysis - using uncertainty estimates of model inputs and parameters based on empirical data - shows that the underestimation of the soil C stock can be due to overestimation of decomposition rates of recalcitrant organic matter in the soil model and to including only trees as a source of litter. However, uncertainty in these two factors is shown to have a minimal effect on soil sink estimates. The key uncertainty in the soil sink is the initial value of the soil C stock, i.e. the assumed steady state soil C stock at the start of the time series in 1970. However, this source of uncertainty is reduced in importance for when approaching the end of the data series. This indicates that a longer time series of forest inventory data will decrease the uncertainty in the soil sink estimate due to initialisation of the soil C stock. Other, less significant, sources of uncertainty in estimates of soil stock and sink are BEF for fine roots and turnover rates of fine roots and foliage. The used method for calculation of a forest C budget can be readily applied to other regions for which similar forest resource data are available.

Abstract

According to previous studies, short day (SD) treatment may increase frost hardiness in Picea abies (L.) Karst. seedlings during shoot elongation the next year. The purpose of this study was to examine how timing of the SD treatment affects spring frost hardiness. The following four treatments were applied in the first growth period: natural photoperiod (Nat), or SD treatment (8/16 h, day/night) either from 14-28 July (SD1), 28 July-11 August (SD2), or 11 20 August (SD3). After 125 days in the cold store (October-January), the seedlings were transferred to forcing conditions (20-25oC, 24 h photoperiod) followed by freezing tests at 3, -5, -7 and 9oC when most seedlings had reached bud break stage 7 (Krutzsch index). Seedling height measurements and analyses of carbohydrate status, nitrogen concentration and dry weight of needles after cold storage were done to examine the treatments` impact on seedling quality. SD treatment reduced visual freezing injury to current- and first-year shoots. Mortality occurred at –7 and –9oC and was significantly higher in treatments Nat and SD1 (43% in both) than in the SD2 (23%) and SD3 (15%) treatments. Seedlings from the late SD treatments also showed better height growth and developed more shoots from dormant buds after freezing to –3 and –5oC. Collectively, these findings demonstrate the importance of proper timing of the SD treatment in relation to the seedlings’ natural growth rhythm.