Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2008

Abstract

Pine Wood Nematode (PWN, Bursaphelenchus xylophilus) is the causal organism of Pine Wilt Disease (PWD), the worst forest pest of Japan. In Europe PWN is known to exist in Portugal. The Norwegian Food Safety Authority (Mattilsynet) is concerned about the plant health risks and the consequences to the society if PWN should establish in Norway. Mattilsynet needs a scientific assessment of the proposed measures in a contingency plan for PWN. Mattilsynet also needs the risks connected with recent spread of PWN in Portugal to be evaluated before possible changes can be made in the current phytosanitary policy of Norway. On this background Mattilsynet requested a pest risk assessment of PWN from the Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM). To answer the request, VKM commissioned a draft pest risk assessment report from the Norwegian Institute for Agricultural Sciences and Environmental Research (Bioforsk). A working group appointed by VKM’s Panel on Plant Health (Panel 9) has been involved during Bioforsk’s work on the report. VKM’s Panel 9 has used the report as a basis for VKM’s opinion. The current document answers Part 1 of Mattilsynet’s request, and was adopted by Panel 9 on a meeting 3rd September 2008. VKM’s Panel 9 gives the following main conclusions of the risk assessment: The PRA area of this assessment is Norway. PWN is not known to occur in Norway. With present trade pattern the probability of entry of PWN into Norway is expected to be high. The most probable pathway for entry of PWN into Norway would be wood packaging material (WPM). The probability that PWN will establish and spread in Norway is considered as high. With regard to the so-called Pest Free Areas (PFAs) of Portugal, the criteria given in ISPM No. 4 (FAO 1995) for establishing and maintaining PFAs have not been met, and the data available is not sufficient to confirm the existence of PFAs. Acceptance of untreated conifer wood from all parts of Portugal will result in a very high probability of entry and a high probability of establishment and spread of PWN and its vector to Norway. Uncertainty factors: To the best of our knowledge PWN is absent from the PRA area. The beetle M. sutor is regarded as a potential vector or PWN, but this has so far not been demonstrated in nature. The currently low vector densities may retard establishment of the PWN and PWD, but it will probably not stop establishment in a longer perspective. Lack of information on the dynamics of PWN populations in cool climates complicates estimates of the spread of the nematode and PWD. Custom routines may fail in their detection of PWN. Import of a seemingly harmless material might therefore pose an unknown risk. WPM follows consignments of all kinds and is a good example of a hazardous material, which often escapes plant health inspections. Detailed assessments of economic consequences of a possible establishment and spread of PWN in Norway, the effects of global warming and other climate changes on the probability for PWD outbreaks, and the effect of possible phytosanitary measures, will be given in Part 2.

Abstract

The inhibitory effect of methanol bark extracts from six deciduous and three coniferous European tree species were bioassayed against eight fungi from the different damage categories, brown rot, white rot, canker and blue-stain. This is the first report providing data on the antifungal activity of several Europaen tree species against fungi within these damage categories. Generally the decay fungi were more inhibited by the bark extracts than the blue-stain fungi, while the lowest inhibition was found among the cancer fungi. The main pattern found between the fungal groups in relation to the bark extracts in this study is believed to be caused by the route of ingress. Acer platanoides bark extract proved to be the most effcient bark extract tested, significantly reducing the growth rate of all tested fungi. Betula pubescens bark extract generally gave the weakest reduction in growth rate. In this study, the conifer bark extracts were in general more active against the canker and blue stain ascomycete fungi than the deciduous trees extracts.

2007

Abstract

In spring 2002, extensive damage was recorded in southeast Norway on nursery-grown Norway spruce seedlings that had either wintered in nursery cold storage or had been planted out in autumn 2001. The damage was characterised by a top shoot dieback. Two visually distinct types of necroses were located either on the upper or lower part of the 2001-year-shoot. Isolations from the upper stem necroses rendered Gremmeniella abietina, while Phomopsis sp. was isolated mostly from the from the lower stem necroses. RAMS (random amplified microsatellites) profiling indicated that the G. abietina strains associated with diseased nursery seedlings belonged to LTT (large-tree type) ecotype, and inoculation tests confirmed their pathogenicity on Norway spruce seedlings. Phomopsis sp. was not pathogenic in inoculation tests, this implying it may be a secondary colonizer. We describe here the Gremmeniella - associated shoot dieback symptoms on Norway spruce seedlings and conclude that the unusual disease outburst was related to the Gremmeniella epidemic caused by the LTT type on large pines in 2001. The role of Phomopsis sp. in the tissue of diseased Norway spruce seedlings is yet unclear.

Abstract

Combinations of covering and fungicide applications were tested on two sweet cherry cultivars; Van during two years (2001 and 2002) and Lapins three years (2001"2003). The following treatments were tested in 2001 and 2002: (i) covering during flowering and from 5 to 6 weeks prior to harvest and throughout harvest, no fungicides applied, (ii) as (i) but fungicides were applied once or twice between the two covering periods, (iii) covered 5 to 6 weeks prior to harvest and throughout harvest, fungicides applied two or three times prior to covering, and (iv) uncovered throughout the season, fungicides applied two or three times in the period from flowering towards harvest. In 2003, the trees were covered only from 5 to 6 weeks prior to harvest and throughout harvest. Both treatments that year received fungicide applications during flowering, but one of the treatments was left unsprayed during the green fruit period prior to covering. Every combination of covering and fungicide applications reduced total fruit decay at harvest significantly compared to a full fungicide programme and no covering. In three of four trials when the trees were covered during flowering and prior to harvest, and fungicide applications were omitted in the green fruit phase between the covering periods, no significant increase in fruit rot occurred compared to treatments where fungicides were applied. However, in one trial there was a significant increase in fruit rot by leaving out one fungicide spray during that intermittent period. Furthermore, if fungicides were only applied during flowering and not on green fruit before covering in 2003, a significant increase in fruit rot occurred. Thus, leaving out fungicide applications during that supposedly less susceptible green fruit period, increased the risk of acquiring fruit rot. Applying fungicides during the green fruit stage significantly reduced the amount of brown rot in four of five trials and anthracnose in one of five trials. No negative effect on fruit quality was found from the extended covering periods. It can be concluded that covering effectively replaced fungicide applications during flowering and prior to harvest.

To document

Abstract

No abstract has been registered