Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2017
Authors
Laura Jaakola Laura Zoratti Nga Nguyenquynh Lara Giongo Katja Karppinen Anne Linn Hykkerud Eivind Uleberg Inger Martinussen Hely HäggmanAbstract
No abstract has been registered
Abstract
Important factors for development of quality defects are the physical, physiological and chemical state of the tubers, which is also described as the maturity status of the crop. The use of maturity indicators as predictors of quality in potato tubers during and after storage was explored in cvs. Asterix and Saturna with three different maturity levels during three years (2010, 2012 and 2013). The maturity indicators measured 1–3 weeks before harvest and at harvest included haulm senescence (haulm maturity), skin set (physical maturity), dry matter content (physiological maturity) and contents of sucrose, glucose and fructose (chemical maturity). Potato quality parameters were measured three times during storage (December, February and April) and included dry matter content, sucrose, glucose and fructose contents, weight loss and fry colour. Cultivar and maturity level were included as categorical predictors in a linear regression model and contributed significantly (P < 0.001) to the models predicting reducing sugars during storage. Dry matter, sucrose, glucose and fructose were included as continuous predictors in the linear regression models and contributed significantly (P < 0.01) to the sucrose, glucose and fructose models and these models explained a high proportion of the variation (R2 ≥ 0.88). Skin set contributed significantly to the weight loss models (P < 0.01) but the models showed low R2 -values (R2 < 0.48). Sucrose contents contributed significantly (P = 0.05) to the fry colour model for Asterix and the fry colour models for both Asterix and Saturna had R2 -values of 0.50 and 0.51 respectively. This study provides new information about the influence of maturity on potato quality during storage and the potential of using field measurements of maturity as predictors of storage potential for processing potato cultivars Asterix and Saturna in Norway.
Authors
Mette Thomsen Erlend Indergård Belachew Asalf Tadesse Pia Heltoft Thomsen Anne-Berit Wold Berit Nordskog Gerd Guren Johannes Dyste Hanne LarsenAbstract
Optimization of produce quality and storage conditions to reduce loss during long-term storage of root vegetables in Norway (OPTIROOT, 2016-2019) Authors: Thomsen, M.G., Indergaard, E., Asalf, B., Heltoft, P., Wold, A.B., Nordskog, B., Guren, G, Dyste, J. & Larsen, H. Author’s affiliation: Key words: carrot, swede, celeriac, storage technology, diseases, physiological disorder, packaging, nutrition Reducing yield loss along the supply chains is important for resource sustainability in vegetable production. Norwegian root vegetables are typically stored 6 to 8 months before consumption, often resulting in 20-30% loss post harvest. In OptiRoot 26 producers, refrigeration-technology companies, sensor developer, grower’s organisation, agricultural advisory service, and four research institutes are cooperating and conducting research to improve storage quality of carrot, swede and celeriac. The research focuses on: i) Fertilizer/Boron deficiency affects the storage quality of root vegetables and amount, methods of application, and timing of boron are studied in swede and celeriac. ii) Interaction between storage conditions/functions and produce quality of the root vegetables through mapping of technical features of 27 storages. The storage conditions recorded are relative humidity, air movement, temperature in boxes and storages, and physical features of storages. In addition, the physiological and health status of the produces are assessed one week before harvest, postharvest and post-storage. The prevalence of fungal diseases or disorders varied from region to region and between storages. iii) Effects of pre-storage wound healing are tested using seven different temperature strategies (direct to 0° C vs. down 0.2° C per day vs. 1° C per day) and low/high humidity in carrot (2016/17/18), celeriac and swede (2017/18/19). Preliminary results show that wound healing reduced loss due to fungal infections in carrot iv) CO2 concentration, temperature and relative humidity were recorded over time inside carrot storage bin liners with different numbers of perforations. An initial screening indicated a positive correlation between number of holes and number of fresh roots. As a post storage method, coating of swede with chitosan oligomers will be tested to inhibit growth of post-harvest pathogens. In conclusion, OptiRoot have gained good progress and promising preliminary results by connecting data on biology and technology for reduction of loss during long-term storage.
Authors
Ingunn M. VågenAbstract
No abstract has been registered
Authors
Ingunn M. VågenAbstract
Genetic resources of pea (Pisum sativum) may represent valuable traits for inclusion in breeding programs, but may also be valuable directly due to good adaptation to local agro-climatic conditions, or have market potential as heirloom foods. Grain legume production in Norway is limited compared to many other European countries, but increased acreage is desired and expected for several reasons. A short growing season and the specific agro-climatic conditions makes choice of genotypes important for reliable grain and protein yields. During three years, several evaluation field trials with pea genetic resources were carried out in Southern Norway, assessing morphological and phenological traits, seed yields and protein levels. The trials included pea accessions from Norway(1), Sweden(6), Finland(1), Latvia(8), Estonia(9) and Portugal(1), as well as commercial cultivars(6). The genotypes differed widely in grain yield, time and duration of flowering, maturity, plant height, and resistance to lodging. Seed protein levels ranged from 24.0 to 32.7%. Protein levels for these pea genotypes under Norwegian field conditions appear to be higher than in comparable trials in countries at lower latitudes. The research was supported by the EU FP7 project Eurolegume and NordGen (Nordic Genetic Resource Center).
Authors
Grethe Iren Andersen Borge Ingunn M. Vågen Gerd Guren Fredd Vergara Gesine Schmidt Sidsel Fiskaa Hagen Kristine S. Myhrer Paula VarelaAbstract
No abstract has been registered
Authors
Ingunn M. VågenAbstract
No abstract has been registered
Authors
Trond Løvdal Ferruh Erdogu Bart van Droogenbroeck Ingunn M. Vågen Agnieszka Bartoszek Christine Vos Inge Hanssen Giovanni Agati Stanislaw Kaniszewski Dagbjørn Skipnes Mustafa Tutar Romain Larbat Christophe RobinAbstract
No abstract has been registered
Authors
Eldrid Lein MoltebergAbstract
No abstract has been registered
Authors
Eldrid Lein MoltebergAbstract
No abstract has been registered