Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

Abstract

The final chapter in the book summarizes the main messages from the preceding chapters. It analyses the diverse views of the bioeconomy concept and supports the view that sustainable bioeconomy development has the potential to change the way we produce and consume natural resources while reducing the negative impacts on the environment. However, there are always risks associated with any new paradigm, hence, it is necessary to ensure transparency in the process, consider the interests of the most vulnerable groups and introduce genuine stakeholder management from the start. Whether, and to what extent, bioeconomy can contribute to the SDGs is a debatable issue. However, several case studies in the book do support the idea that bioeconomy can help in achieving several SDGs. The chapter also highlights the importance of sustainability indicators, including ecological (i.e., the local ecological footprint, total organic carbon, soil nitrogen, transport of minerals from land to rivers and oceans and other ecosystem services), economic and social sustainability indices in the context of bioeconomy development. Their measurement and monitoring are essential to ensure that we are on the sustainable development path. The chapter suggests possible measures to overcome constraints or risks associated with bioeconomy and proposes the necessary conditions required for sustainable bioeconomy development.

Abstract

This chapter focuses on ocean-land interactions and the potential for bioeconomy that offers unique opportunities to feed the increasing human population. Oceans can provide a circular bioeconomy by using increased CO2, and dissolved nutrients (P, N, Fe and other elements) in the water, leached from land-based activities. Estimates show that CO2 capture by seaweed cultivation alone can range from 1,500 to 3,000 tons per square kilometre. Ocean photosynthetic production provides more food and energy for human consumption without external inputs. This will contribute to sustainable development by providing food security and will aid the recovery of degraded ecosystems, thus directly contributing to the SDG 2 (reducing hunger) and SDG 14 (protecting life below water). Nevertheless, increasing food production from the oceans has its associated risks if the proper conditions are not met. Hence, proper coastal land use management is important as it continuously affects the nutrient flows, which in turn can lead to more serious changes in carbonate chemistry and ocean acidification. Genuine and stable partnerships, therefore, are necessary to share responsibility for environmental stewardship and to manage marine and coastal ecosystems sustainably. The chapter suggests the need for financial incentives to encourage research and innovations, support farmers associations and establish common platforms to share data and knowledge on oceans for better environmental management.

Abstract

This chapter provides a comprehensive literature review of sustainable bioeconomy development, with a focus on the definition, concepts, potential and risks involved. Countries differ on how they view bioeconomy, with some putting emphasis on sustainability and ecosystem services, while others focus on economic growth as the main goal. The literature review shows that bioeconomy is a rather new concept, at times its goals are conflicting, and its objectives are opposing. Hence, the lack of a common bioeconomy agenda and understanding across the globe will be one of the main constraints to achieve the UN Sustainable Development Goals (SDGs). However, bioeconomy brings the sustainable development discussions back onto the policy agenda, at both the national and international levels. There are sceptics who do not support this argument and claim that bioeconomy and SDGs do not go together and this is the agenda set by some industrialized countries and the corporate sector to suit their own interests. As the impacts of bioeconomy spread beyond country borders, a common agenda is necessary to keep the balance between the economic, environmental and social objectives. Experience of bioeconomy so far is limited and hence future development must be based on the strictly responsible, accountable and sustainable use of natural resources.

To document

Abstract

In the future, the world is expected to rely increasingly on renewable biomass resources for food, fodder, fibre and fuel. The sustainability of this transition to bioeconomy for our water systems depends to a large extent on how we manage our land resources. Changes in land use together with climate change will affect water quantity and quality, which again will have implications for the ecosystem services provided by water resources. These are the main topics of this Ambio special issue on ‘‘Environmental effects of a green bio-economy’’. This paper offers a summary of the eleven papers included in this issue and, at the same time, outlines an approach to quantify and mitigate the impacts of bioeconomy on water resources and their ecosystem services, with indications of useful tools and knowledge needs.

To document

Abstract

Reference conditions of water bodies are defined as the natural or minimal anthropogenically disturbed state. We compared the methods for determining total phosphorus and total nitrogen concentrations in rivers in Finland, Norway and Sweden as well as the established reference conditions and evaluated the possibility for transfer and harmonisation of methods. We found that both methods and values differed, especially for lowland rivers with a high proportion of agriculture in the catchment. Since Denmark has not yet set reference conditions for rivers, two of the Nordic methods were tested for Danish conditions. We conclude that some of the established methods are promising but that further development is required. We moreover argue that harmonisation of reference conditions is needed to obtain common benchmarks for assessing the impacts of current and future land use changes on water quality.

To document

Abstract

The reliability of short-term weather forecast provided by COSMO model in simulating reference evapotranspiration (ET0) was evaluated in 7 study sites distributed in 4 countries (Italy, Norway, Romania and Spain). The main objective of the study was to assess the optimal scenario for calculating ET0, using the FAO-56 Penman-Monteith (PM) equation, by separately considering the accuracy in the use of “past” and “forecast” data input. Firstly, each forecasted variable (air temperature, Tair; relative humidity, RH; wind speed, u2; solar radiation, Rs) and ET0 were compared with in situ observations at hourly and daily scales. Moreover the seasonality effect in the forecast performance was evaluated. Secondly, simulated ET0 were computed every three days with: (i) a “past scenario” that used the observed data input measured in situ during the previous three days, (ii) a “forecast scenario” that used the forecasted input variables for the next three days; and compared with (iii) actual ET0 obtained from the in situ measured data. A general good agreement was found between observed and forecasted agro-meteorological parameters at the different explored time-scales. The best performance was obtained for Tair and Rs, followed by RH and u2. Globally, the comparison between ET0 from the measured and forecasted data input showed high performance, with R2 and RMSE of 0.90 and 0.68 mm d−1. ET0 simulations resulted more accurate using the “forecast scenario” (1.7% overestimation), rather than using the “past scenario” (2.6% underestimation). These results open promising perspectives in the use of forecast for ET0 assessment for different agriculture practices and particularly for irrigation scheduling under water scarcity conditions.

Abstract

This book examines the bioeconomy concept, analysing the opportunities it can generate, the constraints and the potential benefits for society. The main objective of bioeconomy is to promote economic development, by creating jobs and enhancing the sustainable utilization of bio-resources. A primary driver of bioeconomy strategy, therefore, is the need to respond to the growing population's food and economic requirements. While today research and literature related to bioeconomy are limited, this book presents a unique collection of perspectives on the complex dimensions of the bioeconomy debate. Drawing on the experiences from Europe, Asia and Africa, it presents an international overview. The chapters address a wide range of issues, including coastal-land interactions, ecosystem services, food production, rural development, agriculture, forest management and bioenergy. As a whole, the volume outlines what role bioeconomy can play in contributing to the United Nations Sustainable Development Goals (SDGs) without compromising on the ecological sustainability and equitable distribution of benefits. The book concludes by providing recommendations for developing bioeconomy in respective sectors (agriculture, forestry, fisheries, renewable energy) and directions for planning future bioeconomy programmes and strategies. The Bioeconomy Approach will be of great interest to students and scholars of ecological economics, development economics and environmental economics, as well as policy-makers and practitioners involved in sustainable development.

To document

Abstract

Nordic water bodies face multiple stressors due to human activities, generating diffuse loading and climate change. The ‘green shift’ towards a bio-based economy poses new demands and increased pressure on the environment. Bioeconomy-related pressures consist primarily of more intensive land management to maximise production of biomass. These activities can add considerable nutrient and sediment loads to receiving waters, posing a threat to ecosystem services and good ecological status of surface waters. The potential threats of climate change and the ‘green shift’ highlight the need for improved understanding of catchment-scale water and element fluxes. Here, we assess possible bioeconomy-induced pressures on Nordic catchments and associated impacts on water quality. We suggest measures to protect water quality under the ‘green shift’ and propose ‘road maps’ towards sustainable catchment management. We also identify knowledge gaps and highlight the importance of long-term monitoring data and good models to evaluate changes in water quality, improve understanding of bioeconomy-related impacts, support mitigation measures and maintain ecosystem services.

To document

Abstract

To improve risk assessment, control and treatment strategies of contaminated sites, we require accurate methods for monitoring solute transport and infiltration in the unsaturated zone. Highly spatio‐temporal heterogeneous infiltration during snowmelt increases the risk of contaminating the groundwater in areas where de‐icing chemicals are required for winter maintenance of roads and runways. The objective of this study is to quantify how the different processes occurring during snowmelt infiltration of contaminated meltwater affect bulk electrical resistivity. Field experiments conducted at Moreppen experimental lysimeter trench are combined with heterogeneous unsaturated soil modelling. The experimental site is located next to Oslo airport, Gardermoen, Norway, where large amounts of de‐icing chemicals are used to remove snow and ice every winter. Bromide, an inactive tracer, and the de‐icing chemical propylene glycol were applied to the snow cover prior to the onset of snowmelt, and their percolation through the unsaturated zone was monitored with water sampling from 37 suction cups. At the same time, cross‐borehole time‐lapse electrical resistivity measurements were recorded along with measurements of soil water tension and temperature. Images of two‐dimensional (2D) bulk resistivity profiles were determined and were temperature corrected, to compensate for the change in soil temperature throughout the melting period. By using fitted parameters of petrophysical relations for the Moreppen soil, the tensiometer data gave insight into the contribution of water saturation on the changes in bulk resistivity, while water samples provided the contribution to the bulk resistivity from salt concentrations. The experimental data were compared with numerical simulation of the same experimental conditions in a heterogeneous unsaturated soil and used to quantify the uncertainty caused by the non‐consistent resolutions of the different methods, and to increase our understanding of the resistivity signal measured with time‐lapse electrical resistivity tomography. The work clearly illustrates the importance of ground truthing in multiple locations to obtain an accurate description of the contaminant transport.

Abstract

This chapter highlights the challenges in the agriculture sector in Africa and shows that the current systems are not productive, but are linear, dependent on fossil fuels, and even depleting natural resources. The chapter reviews the potential of sustainable intensification of agriculture with an emphasis on diversified cropping systems and value chain enhancement as an option to promote the bio-based economy in the rural regions of Africa. The chapter uses data and experiences from an ongoing programme in Malawi (www.innovafrica.eu), where maize-legume cropping systems were adopted by smallholders. There is great potential to apply the 3Rs principle of the bio-based economy (i.e., reduce, reuse and recycle) in the farming systems at the production, post-production, marketing and processing stages of the value chain. To sum up, the sustainable intensification approach, inclusive of value chain development, appears to be a promising option for smallholders in Sub-Saharan Africa, which can improve productivity, increase farmers’ income, encourage gender mainstreaming and at the same time reduce environmental impacts.