Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2008

Abstract

Life on earth depends on water and where running water occurs on earth, there is life. Nevertheless, existing modelling approaches in hydrology almost completely neglect the biological aspects of water flow. We claim that ignoring biological behaviour and interaction in catchment runoff modelling is too restrictive, and that computational theories can be used to formalise behaviour and interaction and model the biological impact on runoff. To demonstrate this, starting with a general classification of catchment behaviour, as documented in runoff data, we will use symbolic dynamics to quantify randomness and complexity in the time series. This approach shows that runoff records from very different catchments show common behaviour. This behaviour can be fitted to a one-parametric curve, stratified into three regions. In this manner, it becomes possible to represent and classify types of interactive behaviour that cannot be generated algorithmically. This suggests that physically based catchment models do not properly represent all types of interactive behaviour, and that signatures of biological interaction are present in runoff data.

Abstract

Over the last decades the forestry sciences have been opened for new topics and methods. In addition to traditional forestry topics they have participated in environmental and ecosystem research. So far this type of research has been perceived as “applied”. From the modelling perspective there has been a misunderstanding among the participating disciplines of the character of knowledge being applied. Here we introduce two types of models of forest utilization and discuss their possibilities and limits for forestry sciences. The first perspective of forests is the one dominating in modelling today and in forestry sciences. It has been adopted from physics. The second perspective of forests has implicitly been adopted in the past for pragmatic reasons.

Abstract

Many time series analysis methods depend on equally spaced observations with no data point missing. If this condition is met, powerful techniques are available that identify temporal structures such as trends or periodic phenomena or nonlinear dynamics. Unfortunately, most of observations of natural systems, in particular over longer periods of time such as decades, are prone to sampling errors leading to missing points in the observations. Singular System Analysis (SSA) is a powerful tool to extract the dynamics contained in time series at arbitrary temporal scales...

Abstract

Runoff time series are known to contain long term structures on interannual to decadal time scales. Investigating spatial patterns of long term structures is a way to elucidate the relationship between external forcings and watershed properties. This would be a valuable contribution to an improved water resources management. Singular System Analysis (SSA) is a powerful technique to identify and extract significant long term components from time series. However, many observations from natural systems are prone to missing data that hamper many analysis techniques, including the SSA in its original formulation...

Abstract

Insect-induced damages in forests are a major concern for timber production, landscape conservation and ecosystem research. Early detection methods based on remote sensing data can document the severity and spatial extent of ongoing attacks and might aid in designing mitigation measures or even prevention where necessary. In southeastern Norway, a large-scale insect defoliation of pine trees is ongoing. The larvae of the Pine sawfly Neodiprion sertifer reate it with its mass attacks during their feeding on needles in June and July. In the winter before the attack, egg galleries are evident in the needles. This provides a test case for early detection methods and remote sensing techniques for monitoring forest health....

Abstract

In European forests, standings stocks are currently increasing and are higher than ever during the last decades. This is due to a multitude of reasons; human impacts such as reduced logging or the abandonment of agricultural land are clearly among them. However, data from intensive monitoring plots reveal an increased growth even in the absence of direct human intervention. For this study, we used a set of 363 such plots from 16 European countries, which are a subset of the ICP-Forests Level II plots, and are typically rectangular areas with a size of 0.25 ha. We investigated the influence of environmental factors on forest growth. In particular, the role of nitrogen, sulphur and acid deposition, temperature, precipitation and drought was elucidated. The study focussed on the tree species Norway spruce, Scots pine, common beech and European as well as sessile oak. We used existing information on site productivity, stand age and stand density to estimate expected growth. Relative tree growth was then calculated as the ratio between actual growth, obtained within a five years observation period, and expected growth. The site productivity incorporates past environmental conditions and was either computed from site index curves, where we distinguished Northern, Central and Southern Europe variants, or was taken from expert estimates. The models explained between 18% and 39% of the variance. Site productivity and stand age were positively and negatively related to actual growth, respectively. The results indicated consistently a fertilizing effect from nitrogen deposition, with roughly one percent increase in site productivity per kg of nitrogen deposition per ha and year, most pronounced for plots having soil C/N ratios above 25. We also found a positive albeit less clear relationship between relative growth and summer temperatures. Other influences were uncertain. In particular, we cannot conclude on detrimental effects on growth from sulphur and acid deposition or from drought periods.

2007

Abstract

The substitution of biomass for fossil fuels in energy consumption is a measure to mitigate global warming, as well as having other advantages. Political action plans for increased use exist at both European and national levels. This paper briefly reviews the contents of recommendations, guidelines, and other synthesis publications on sustainable use of forest biomass for energy. Topics are listed and an overview of advantages, disadvantages, and trade-offs between them is given, from the viewpoint of society in general and the forestry and energy sectors in particular. For the Nordic and Baltic countries, the paper also identifies the extent to which wood for energy is included in forest legislation and forest certification standards under the ?Programme for the Endorsement of Forest Certification? (PEFC) and the ?Forest Stewardship Council? (FSC) schemes. Energy and forest policies at EU and national levels, and European PEFC forest standards are analysed. With respect to energy policies, the utilisation of wood for energy is generally supported in forest policies, but forest legislation is seldom used as a direct tool to encourage the utilisation of wood for energy. Regulations sometimes restrict use for environmental reasons. Forest certification standards include indicators directly related to the utilisation of wood for energy under several criteria, with most occurrences found under environmental criteria. Roles and problems in relation to policy, legislation, certification standards, recommendations and guidelines, and science are discussed.

Abstract

The substitution of biomass for fossils fuels in energy consumption is a measure to mitigate global warming, as well as having other advantages. Political action plans for increased use exist at both European and national levels. This paper briefly reviews the contents of recommendations, guidelines and other synthesis publications on sustainable use of forest biomass for energy. Topics are listed and an overview of advantages, disadvantages and trade-offs between them is given, from the viewpoint of society in general and the forestry and energy sectors in particular. For the Nordic and Baltic countries, the paper also identifies the extent to which wood for energy is included in forest legislation and forest certification standards under the “Programme for the Endorsement of Forest Certification” (PEFC) and the “Forest Stewardship Council” (FSC) schemes. Energy and forest policies at EU and national levels, and European PEFC forest standards are analysed. With respect to energy policies, the utilisation of wood for energy is generally supported in forest policies, but forest legislation is seldom used as a direct tool to encourage the utilisation of wood for energy. Regulations sometimes restrict use for environmental reasons. Forest certification standards include indicators directly related to the utilisation of wood for energy under several criteria, with most occurrences found under environmental criteria. Roles and problems in relation to policy, legislation, certification standards, recommendations and guidelines, and science are discussed.