Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

Abstract

This contribution demonstrates an example of experimental automatic image analysis to detect spores prepared on microscope slides derived from trapping. The application is to monitor aerial spore counts of the entomopathogenic fungus Pandora neoaphidis which may serve as a biological control agent for aphids. Automatic detection of such spores can therefore play a role in plant protection. The present approach for such detection is a modification of traditional manual microscopy of prepared slides, where autonomous image recording precedes computerised image analysis. The purpose of the present image analysis is to support human visual inspection of imagery data – not to replace it. The workflow has three components: • Preparation of slides for microscopy. • Image recording. • Computerised image processing where the initial part is, as usual, segmentation depending on the actual data product. Then comes identification of blobs, calculation of principal axes of blobs, symmetry operations and projection on a three parameter egg shape space.

To document

Abstract

Global environmental changes are causing Lyme disease to emerge in Europe. The life cycle of Ixodes ricinus, the tick vector of Lyme disease, involves an ontogenetic niche shift, from the larval and nymphal stages utilizing a wide range of hosts, picking up the pathogens causing Lyme disease from small vertebrates, to the adult stage depending on larger (non-transmission) hosts, typically deer. Because of this complexity the role of different host species for emergence of Lyme disease remains controversial. Here, by analysing long-term data on incidence in humans over a broad geographical scale in Norway, we show that both high spatial and temporal deer population density increase Lyme disease incidence. However, the trajectories of deer population sizes play an overall limited role for the recent emergence of the disease. Our study suggests that managing deer populations will have some effect on disease incidence, but that Lyme disease may nevertheless increase as multiple drivers are involved.

Abstract

Fire blight was detected for the first time in Norway in 1986. It was a limited outbreak on the West Coast, only on ornamentals, particularly on Cotoneaster. An organization for the eradication and containment of fire blight was quickly established, and given comprehensive statutory powers and government resources to do surveys and eradicate diseased plants and highly susceptible plants from contaminated areas. The work has managed to restrict fire blight to the West Coast. Eastern and Northern parts of the country are considered pest free areas. The disease has not moved into important fruit-growing areas. Spread of fire blight to new areas has mainly been due to uncontrolled movement of beehives. From 1969 to 2016 import of all host plants from countries with fire blight has been prohibited. Systematic yearly surveys by foot and car in all parts of the country, using digital maps, internet connected tablets with GPS, and software for registrations made in the field have proved to be an efficient tool to spot new outbreaks at an early stage and start eradication, thus limiting further spread.