Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

To document

Abstract

Biochar soil amendment is advocated to mitigate climate change and improve soil fertility. A concern though, is that during biochar preparation PAHs and dioxins are likely formed. These contaminants can possibly be present in the biochar matrix and even bioavailable to exposed organisms. Here we quantify total and bioavailable PAHs and dioxins in a suite of over 50 biochars produced via slow pyrolysis between 250 and 900 °C, using various methods and biomass from tropical, boreal, and temperate areas. These slow pyrolysis biochars, which can be produced locally on farms with minimum resources, are also compared to biochar produced using the industrial methods of fast pyrolysis and gasification. Total concentrations were measured with a Soxhlet extraction and bioavailable concentrations were measured with polyoxymethylene passive samplers. Total PAH concentrations ranged from 0.07 μg g–1 to 3.27 μg g–1 for the slow pyrolysis biochars and were dependent on biomass source, pyrolysis temperature, and time. With increasing pyrolysis time and temperature, PAH concentrations generally decreased. These total concentrations were below existing environmental quality standards for concentrations of PAHs in soils. Total PAH concentrations in the fast pyrolysis and gasification biochar were 0.3 μg g–1 and 45 μg g–1, respectively, with maximum levels exceeding some quality standards. Concentrations of bioavailable PAHs in slow pyrolysis biochars ranged from 0.17 ng L–1 to 10.0 ng L–1which is lower than concentrations reported for relatively clean urban sediments. The gasification produced biochar sample had the highest bioavailable concentration (162 ± 71 ng L–1). Total dioxin concentrations were low (up to 92 pg g–1) and bioavailable concentrations were below the analytical limit of detection. No clear pattern of how strongly PAHs were bound to different biochars was found based on the biochars’ physicochemical properties.

To document

Abstract

We compared gene expression in Norway spruce secondary phloem (bark) and developing xylem (sapwood) in response to the necrotrophic pathogen Heterobasidion parviporum, wounding and methyl jasmonate (MeJ). The pathogen induced systemic and local up-regulation of PaPX3, PaPX2 and PaChi4 in both bark and sapwood that returned to constitutive levels as the plants recovered from the infection, whereas the local responses to MeJ were similar in both tissues but was longer lasting for PaPX3 and PaChi4. Genes involved in lignin biosynthesis (PaPAL1, PaPAL2, PaC4H3/5 and PaHCT1) were up-regulated locally in the bark in response to pathogen and wounding whereas MeJ induced a similar but stronger local response. The ethylene biosynthesis related transcripts PaACO and PaACS did not increase in response to MeJ treatment or the pathogen, however it increased both locally and systemically as a response to wounding in the sapwood. These results demonstrate that the local and systemic host responses to pathogen infection and wounding largely correspond and reveal striking similarities between the local response to a necrotroph, wounding and MeJ treatment in both bark and living wood.