Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2010

Abstract

Modification of wood with furfuryl alcohol or furfuryl alcohol prepolymer leads to a wood product with increased decay resistance, hardness and dimensional stability. In normal application, i.e. under Use Class 3 conditions, furfurylated wood can be regarded as non-toxic. This has earlier been demonstrated by toxic hazard tests on water leachates using relevant leaching procedures, e.g. the OECD Guideline 313 or the Dutch shower test procedure. These leachates showed slight to no toxicity towards standard aquatic test organisms. However, when using forced leaching procedures with limited amount of water such as the EN 84 procedure, slight to moderate toxicity to the same test organisms was observed, depending on furfurylation process. Furthermore, earlier studies have shown that leachates from wood treated with furfuryl alcohol pre-polymers have higher toxicity to Vibrio fischeri (luminescent marine bacterium) than leachates from wood treated with furfuryl alcohol monomers and that this probably is attributed to differences in leaching of chemical compounds. The ambition of the present study, was to investigate which chemical compounds in the leachates causes toxicity to the aquatic organisms V. fischeri and Daphnia magna (water flea). In this study five different wood species, both hardwoods and softwoods, treated with three different furfurylation processes, were leached according to two different leaching methods. The study shows that this difference in toxicity of leachates towards V. fischeri most likely cannot be attributed to maleic acid, furan, furfural, furfuryl alcohol or 2-furoic acid. However, the difference in toxicity might be caused by the substance 2,5-furandimethanol. Leachates from furfurylated wood still need to be investigated further in order to identify the chemical differences between wood furfurylated with furfuryl alcohol monomers and furfuryl alcohol prepolymer causing differences in toxicity to different organisms.

To document

Abstract

Climate change and rising temperatures have been observed to be related to the increase of forest insect damage in the boreal zone. The common pine sawfly (Diprion pini L.) (Hymenoptera, Diprionidae) is regarded as a significant threat to boreal pine forests. Defoliation by D. pini can cause severe growth loss and tree mortality in Scots pine (Pinus sylvestris L.) (Pinaceae). In this study, logistic LASSO regression, Random Forest (RF) and Most Similar Neighbor method (MSN) were investigated for predicting the defoliation level of individual Scots pines using the features derived from airborne laser scanning (ALS) data and aerial images. Classification accuracies from 83.7% (kappa 0.67) to 88.1% (kappa 0.76) were obtained depending on the method. The most accurate result was produced using RF with a combination of data from the two sensors, while the accuracies when using ALS and image features separately were 80.7% and 87.4%, respectively. Evidently, the combination of ALS and aerial images in detecting needle losses is capable of providing satisfactory estimates for individual trees.

Abstract

The Norwegian CORINE land cover (CLC2000) was completed autumn 2008. The CLC map was generated automatically from a number of dataset using GIS-techniques for map generalisation. The CLC map has a coarse resolution and it is also using a classification system developed in an environment very different from the Nordic. It is therefore interesting to evaluate both content and correctness of CLC. This study shows that there is a good resemblance between the CLC classes and detailed, large scale maps. The diversity in classes on the other hand, is lost due to the CLC classification system.

Abstract

The aim of this study was to validate and compare single-tree detection algorithms under different forest conditions. Field data and corresponding airborne laser scanning (ALS) data were acquired from boreal forests in Norway and Sweden, coniferous and broadleaved forests in Germany, and pulpwood plantations in Brazil. The data represented a variety of forest types from pure Eucalyptus stands with known ages and planting densities to conifer-dominated Scandinavian forests and more complex deciduous canopies in Central Europe. ALS data were acquired using different sensors with pulse densities varying between the data sets. Field data in varying extent were associated with each ALS data set for training purposes. Treetop positions were extracted using altogether six different algorithms developed in Finland, Germany, Norway and Sweden, and the accuracy of tree detection and height estimation was assessed. Furthermore, the weaknesses and strengths of the methods under different forest conditions were analyzed. The results showed that forest structure and density strongly affected the performance of all algorithms. The differences in performance between methods were more pronounced for tree detection than for height estimation. The algorithms showed a slightly better performance in the conditions for which they were developed, while some could be adapted by different parameterization according to training with local data. The results of this study may help guiding the choice of method under different conditions and may be of great value for future refinement of the single-tree detection algorithms.