NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.



We studied how light from different light sources influences germination and postgerninative growth of plants from somatic embryos and seeds of Norway spruce (Picea abies [L.] Karst).Somatic embryos of three spruce genotypes and seeds were subjected to light from commercially available light sources: Philips TLD Blue 18W/18 (BL), Osram Fluora (FL), Philips Cool White TL 50W/33 (CW), Osram Warm White 18W/30 (WW), Philips Yellow 36W/16 (YE) and Philips TLD Red 36W/15 (RE), 18 h a day, with a photon flux (PAR) at 30 mu mol m(-2) s(-1). After 6 weeks the germination frequencies of the somatic embryo-derived plantlets were 50% under BL and 98% under RE. The corresponding mean root lengths were 6.7 and 15.4 mm. In somatic embryo-derived plantlets cultured under BL, FL, CW and WW, both roots and hypocotyls turned brown, presumably due to production of phenolic substances. Browning was less severe in somatic embryo-derived plantlets cultured under RE and YE. Under RE, the epicotyl elongated in 37% of the plantlets after 6 weeks, compared with 70% under the other light sources. Seed germination and postgerminative seedling growth was modestly influenced by light from these light sources. RE and WW initially delayed germination as compared with BL, FL and CW, but after 2 weeks, more than 90% of the seeds had germinated under all light sources. In conclusion, germination and postgerminative growth of somatic embryos of spruce is sensitive to differences in light quality, whereas seed germination and seedling growth is not.