Publications
NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.
2022
Abstract
Weed-free zone underneath apple trees is important to maximize vegetative growth, fruit yield- and quality. Glyphosate applied twice is the usual strategy in apple orchards in Norway. Due to uncertain future of glyphosate there is a need for alternative strategies. A field trial was conducted during 2021 in an orchard (three-year-old trees). Five alternative strategies were tested: 1) Hot water at 3 L m-2 x 3 (spring, early summer, summer), 2) Hot water at 6 L m-2 x 3 (times as previous), 3) Pelargonic acid at full dose (10.9 kg a.s. ha-1) x 1 (early summer), 4) Pelargonic acid at half dose (5.44 kg a.s. ha-1) x 2 (spring, early summer), and 5) Rotary hoe x 3 (early spring, early summer, summer). Glyphosate at 1.08 kg a.s. ha-1 x 2 (early summer, summer) was included as reference strategy. Hot water (about 80 C, 0.1 bar) was applied with a commercial machine (Heatweed Technologies, Norway). Visual assessments of percentage of ground covered by living vegetation were used to estimate weed control efficacy. Dominating species were Taraxacum officinale, Tripleurospermum inodorum, Poa annua, Polygonum aviculare, Galium aparine, Viola arvensis and Senecio vulgaris. Assessed mid-summer (June 24), hot water applied twice (both 3 L m-2 and 6 L m-2) showed very high efficacies, both about 90%. Pelargonic acid showed rather low efficacies, about 15% (10.9 kg a.s. ha-1 x 1) and 45% (5.44 kg a.s. ha-1 x 2). Rotary hoe twice had almost 60%. Efficacy of glyphosate once was 75%. The last assessment was conducted in mid-July, i.e. about 1-2 weeks after the last application of hot water, rotary hoe and glyphosate. The two hot water strategies resulted in very good weed control, i.e.
Editors
Camilla BaumannAbstract
No abstract has been registered
Abstract
No abstract has been registered
Authors
Nils-Otto Kitterød Jens Kværner Per Aagaard Jurga Arustiene Jānis Bikše Atle Dagestad Pål Gundersen Birgitte Hansen Árni Hjartarson Enn Karro Maris Klavins Andres Marandi Rasa Radiene Inga Retike Pekka M. Rossi Lærke ThorlingAbstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
Given the right climatic and environmental conditions, a range of microorganisms can deteriorate wood. Decay by basidiomycete fungi accounts for significant volumes of wood in service that need to be replaced. In this study, a short-wave infrared hyperspectral camera was used to explore the possibilities of using spectral imaging technology for the fast and non-destructive detection of fungal decay. The study encompassed different degradation stages of Scots pine sapwood (Pinus sylvestris L.) specimens inoculated with monocultures of either a brown rot fungus (Rhodonia placenta Fr.) or a white rot fungus (Trametes versicolor L.). The research questions were if the hyperspectral camera can profile fungal wood decay and whether it also can differentiate between decay mechanisms of brown rot and white rot decay. The data analysis employed Partial Least Squares (PLS) regression with the mass loss percentage as the response variable. For all models, the mass loss could be predicted from the wavelength range 1460–1600 nm, confirming the reduction in cellulose. A single PLS component could describe the mass loss to a high degree (90%). The distinction between decay by brown or white rot fungi was made based on spectral peaks around 1680 and 2240 nm, related to lignin.
Abstract
No abstract has been registered
Abstract
No abstract has been registered
Abstract
No abstract has been registered