Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2009

To document

Abstract

Phytophthora ramorum S. Werres, A.W.A.M. de Cook & W.A. Man in‘t Veld is a newly described Phytophthora-species which is considered to be relatively recently introduced to both USA and Europe from an unknown area, or areas, of origin. The pathogen has a wide host range and causes a complexity of disease symptoms generally grouped into three categories: canker, foliage lesion, and dieback. In Europe the pathogen has been reported in 21 countries, Norway included; predominantly on ornamental plants in nurseries, but also outside nurseries in gardens and semi-natural environment, most often on rhododendrons. The Norwegian Food Safety Authority needs a risk assessment of the pest as basis for an evaluation of a future phytosanitary risk management of P. ramorum, including whether the organism should be regulated as a quarantine pest in Norway. On this background the Norwegian Food Safety Authority, in a letter of 22nd August 2008, requested a pest risk assessment of P. ramorum from the Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM). The pest risk assessment was adopted by VKM"s Panel on plant health (Panel 9) on a meeting 24th June 2009. VKM"s Panel 9 gives the following main conclusions of the risk assessment: 1) P. ramorum is present but not widely distributed in Norway, and the pest is under official control. The outdoors surveys of P. ramorum in Norway have not been conducted systematically over the whole country, and some uncertainty therefore still remains regarding the current distribution of P. ramorum in the PRA area. 2) The overall probability of entry of P. ramorum into Norway and the overall probability of establishment of P. ramorum in Norway are both rated as high with low levels of uncertainty; 3) In the absence of statutory control the probability for P. ramorum to be spread quickly in the PRA area by trade of host plants for planting is rated as high. The uncertainty of this assessment is low; 4) The part of the PRA area where presence of P. ramorum might result in economically important losses (the endangered area) is assessed to be most of the country of Norway, except where the climate is predicted to be unfavourable for the pest. However, this area must be regarded as a maximum estimate for the endangered area. On the other hand, a narrow and very conservative estimate for the endangered area can be defined based on the geographical distribution of highly susceptible host plants in Norway. This area is gardens and parks with Rhododendron spp., Viburnum spp. and F. sylvatica and areas in the wild into which Rhododendron spp. has spread and woods with F. sylvatica. Woods with F. sylvatica is limited to the county of Vestfold and some small areas in the counties of Aust-Agder and Hordaland; 5) P. ramorum is likely to have moderate economic impact on the nurseries in the PRA area with current phytosanitary measures. Without any such regulations P. ramorum is likely to have major economic impact on the nursery industry of the PRA area. The levels of uncertainties of these assessments are low; 6) With current phytosanitary measures P. ramorum is likely to have moderate economic impact on parks and private gardens in parts of the PRA area. Without any such regulations P. ramorum is likely to have major economic impact in the best climatic zones of the PRA area. The levels of uncertainties of these assessments are low; 7) The impact of P. ramorum in coniferous and mixed forests of the PRA area is likely to be minor. The level of uncertainty of this assessment is medium. The impact of P. ramorum in natural and planted deciduous broadleaf forests of the PRA area is likely to be minor due to the scattered and limited distribution of the most susceptible species. The level of uncertainty of this assessment is medium; 8) The non-commercial and environmental consequences to natural environments in the PRA area are likely to be moderate. The level of uncertainty ...

2008

Abstract

Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2-3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated.

Abstract

An infectious cDNA clone of a Norwegian isolate of Poinsettia mosaic virus (PnMV) was generated. It consisted of 6,098 nucleotides and encoded a polyprotein of 219.5 kDa. Sequence comparisons indicated that this isolate shared 98.6% (nucleotide) and 97.1% (amino acid) identity with the previously sequenced isolate from Germany. RNA transcripts derived from this cDNA were infectious in Nicotiana benthamiana. However, plants did not present typical PnMV symptoms. Furthermore, RNA transcripts from this cDNA clone were not infectious in poinsettia. Serial propagation of this cDNA clone in N. benthamiana plants restored symptom induction in this host but did not re-establish infectivity in poinsettia.

Abstract

Pine Wood Nematode (PWN, Bursaphelenchus xylophilus) is the causal organism of Pine Wilt Disease (PWD), the worst forest pest of Japan. In Europe PWN is known to exist in Portugal. The Norwegian Food Safety Authority (Mattilsynet) is concerned about the plant health risks and the consequences to the society if PWN should establish in Norway. Mattilsynet needs a scientific assessment of the proposed measures in a contingency plan for PWN. Mattilsynet also needs the risks connected with recent spread of PWN in Portugal to be evaluated before possible changes can be made in the current phytosanitary policy of Norway. On this background Mattilsynet requested a pest risk assessment of PWN from the Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet, VKM). To answer the request, VKM commissioned a draft pest risk assessment report from the Norwegian Institute for Agricultural Sciences and Environmental Research (Bioforsk). A working group appointed by VKM’s Panel on Plant Health (Panel 9) has been involved during Bioforsk’s work on the report. VKM’s Panel 9 has used the report as a basis for VKM’s opinion. The current document answers Part 1 of Mattilsynet’s request, and was adopted by Panel 9 on a meeting 3rd September 2008. VKM’s Panel 9 gives the following main conclusions of the risk assessment: The PRA area of this assessment is Norway. PWN is not known to occur in Norway. With present trade pattern the probability of entry of PWN into Norway is expected to be high. The most probable pathway for entry of PWN into Norway would be wood packaging material (WPM). The probability that PWN will establish and spread in Norway is considered as high. With regard to the so-called Pest Free Areas (PFAs) of Portugal, the criteria given in ISPM No. 4 (FAO 1995) for establishing and maintaining PFAs have not been met, and the data available is not sufficient to confirm the existence of PFAs. Acceptance of untreated conifer wood from all parts of Portugal will result in a very high probability of entry and a high probability of establishment and spread of PWN and its vector to Norway. Uncertainty factors: To the best of our knowledge PWN is absent from the PRA area. The beetle M. sutor is regarded as a potential vector or PWN, but this has so far not been demonstrated in nature. The currently low vector densities may retard establishment of the PWN and PWD, but it will probably not stop establishment in a longer perspective. Lack of information on the dynamics of PWN populations in cool climates complicates estimates of the spread of the nematode and PWD. Custom routines may fail in their detection of PWN. Import of a seemingly harmless material might therefore pose an unknown risk. WPM follows consignments of all kinds and is a good example of a hazardous material, which often escapes plant health inspections. Detailed assessments of economic consequences of a possible establishment and spread of PWN in Norway, the effects of global warming and other climate changes on the probability for PWD outbreaks, and the effect of possible phytosanitary measures, will be given in Part 2.

To document

Abstract

The main Avena species that are important weeds of cereal and arable crops include A. fatua L., A. sterilis and A. barbata Pott. All three species have an abscission scar on the grains. A risk assessment of A. fatua L. as an indirect pest in Norway is given in a separate document. For both A. sterilis ssp. macrocarpa and ssp. maxima, and for A. barbata Pott, the potential for entry and establishment in Norway is considered as very low. A. sterilis ssp. ludoviciana (winter wild oats) has a moderate potential for establishment in Norway. The suitability of the environment for A. sterilis ssp. ludoviciana was therefore investigated: Our assessment of the probability of establishment indicates that the climate is not favourable for establishment of A. sterilis ssp. ludoviciana in Norway. A. sterilis ssp. ludoviciana is a problem in southern Europe and central southern England and is mainly a weed in winter cereals. While it is highly likely that the probability of establishment of A. sterilis ssp. ludoviciana has increased in Norway in recent years due to climate change and consequent changes in cultural practices, its probability of establishment in Norway is still low and it is therefore not likely that it will become a weed in Norway under current conditions. However, if the future climate of the PRA area changes, so that winter conditions become similar to conditions in southern England, while the acreage of winter cereal continues to grow, A. sterilis ssp. ludoviciana could become a weed in Norway. A. sterilis ssp. ludoviciana is not present in Denmark where winter cereals are much more widely cultivated, and the climate is more favourable than in Norway. One would therefore expect the weed to establish in Denmark before it will become a problem in Norway