Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2002

Sammendrag

Several strong westerly storms hit Western Norway during the winter of 1986-87. We studied the uptake, loss and visible effects of sea salt aerosols in Scots pine and Norway spruce. Foliage of was sampled at distances 0-100 km from the coastline between 59¢ª and 65¢ª N, and analysed for chloride, sodium and other elements. The range of chloride and sodium concentrations in needles was 0.5-5.0, and 0.1-3.0 mg g-1, respectively. The local variation was very large close to the coast. The relation to distance from the sea was improved by using distance from the nearest fjord rather than from the outer coastline. Other elements were less variable and not related to distance from the sea, or to sea salt concentrations. Only 1-10% of the needles sea salt content could be removed by 2 minutes washing in distilled water, and still much less of other elements. The amount of sea salt removed by washing was less related to distance from the sea than was the total content. Visible damage to the foliage occurred at chloride concentrations above 1 mg g-1 in the needles. Our conclusions are that analysis of the needles chloride or sodium content is a robust method for confirming damage to tree foliage by sea salt aerosols. Fjords as well as the ocean are significant sources of sea salt aerosols. Large local variation in salt deposition and damage will occur at a rugged coast. Nutrients and other elements are not significantly affected by the sea salt deposition. The use of chloride or sodium as a tracer for dry deposition should take into account not only the enrichment of these elements in canopy throughfall, but also the accumulation in the needles.

Sammendrag

Determining the level of pathogenic fungi and other microorganisms during colonization of the host is central in phytopathological studies. A direct way is to monitor fungal hyphae by microscopic examination, but indirect chitin and ergosterol-based assays have been among the most applied methods in determining fungal biomass within host tissues. Recently real-time technology is increasingly receiving attention as a way to follow infection agents in host tissues.We study the molecular basis of host defense responses, using the coniferous host Norway spruce (Picea abies) infected with the basidomycete Heterobasidion annosum as the experimental system. This basidiomycete is the major root rot causing pathogens in conifers of all age classes.In order to screen host material for differential resistance towards H.annosum for both scientific and commercial reasons, it is a necessity to reliably quantify the fungal colonization of the host tissues. Therefore, the aim of this study was to develop and compare the sensitivity of a real-time PCR assay to an ergosterol based method for determining the rate of colonization by H.annosum in inoculated spruce material. We also applied the methods to rank the infection level of the pathogen on the spruce tissue culture clones.We were able to develop a quantitative multiplex real-time PCR procedure that reliably detecting down to 1pg H.annosum DNA and 1ng host DNA in DNA extracted from infected tissues. There was a very high correlation between the fungal-biomass/total-biomass and fungal DNA-total DNA rankings obtained with ergosterol and real-time PCR respectively, strengthening the credibility of both methods.Based on both ergosterol and real-time PCR, it was clear that some spruce clones were faster and more heavily infected than others. These results indicate that both ergosterol and this real-time procedure can be useful methods to screen different spruce material for their relative resistance to the pathogen H.annosum.

2001

Til dokument

Sammendrag

In 1996, 7000 ha of pine forests were defoliated by the pine looper Bupalus piniaria in south-western Sweden.The susceptibility of trees of different defoliation classes (0, 30, 60, 90 and 100% defoliation) to beetle-vectored blue-stain fungi was tested in inoculation experiments.Forty and 120-year-old Scots pine trees were inoculated with `single\", i.e. a few inoculations of Leptographium wingfieldii and Ophiostoma minus, two blue-stain fungi associated with the pine shoot beetle Tomicus piniperda. The young trees were also \"mass\" inoculated with L. wingfieldii at a density of 400 inoculation points per m2 over a 60 cm stem belt.Host tree symptoms indicated that only trees with 90100% defoliation were susceptible to the mass inoculation.Single inoculations did not result in any consistent differences in fungal performance between trees of different defoliation classes, regardless of inoculated species or tree age class.Leptographium wingfieldii produced larger reaction zones than O. minus, and both species produced larger lesions in old than in young trees.As beetle-induced tree mortality in the study area occurred only in totally defoliated stands, mass inoculations seem to mimic beetle-attacks fairly well, and thus seem to be a useful tool for assessing host resistance.As even severely defoliated pine trees were quite resistant, host defence reactions in Scots pine seem to be less dependent on carbon allocation than predicted by carbon-based defence hypotheses.

Sammendrag

Genetic associations between initiation of embryogenic tissue (ET) and susceptibility to the phytopathogenic fungi Ceratocystis polonica (Siem.) C. Moreau and Heterobasidion annosum (Fr.) Bref. in Norway spruce have been studied by initiating ET from zygotic embryos of mature seeds collected from 19 clones tested for susceptibility to the pathogens in a clonal field trial.Initiation frequencies varied significantly among clones (families), ranging from 12 to 56%. The family variance component accounted for more than 40% of the total variance in initiation frequency of ET. The estimates of broad-sense heritability of fungus susceptibility of the clones ranged from 0.12 for length of phloem necrosis after low-density inoculation with H. annosum to 0.55 for blue-stained sapwood after mass inoculation with C. polonica.None of the susceptibility measures showed any phenotypic correlation with initiation of embryogenic tissue. Genetic correlations and their standard errors were estimated by bootstrapping. Two measures of fungal susceptibility correlated genetically with initiation of ET; estimated at 0.58 for lesion length after inoculation with C. polonica and 0.29 for H. annosum lesion length. A better measure of susceptibility, blue-stained sapwood following inoculation with C. polonica, was not correlated with initiation of ET.

Sammendrag

Air pollution induced changes in pine needle chemistry were observed at sample sites in the surroundings of the Pechenganikel smelter. Close to the smelter, elevated concentrations of Ni, Cu and S were found (Ni: 0.7-1 mmol/kg, CU: 0.4-0.5, and S 40-60 mmol/kg) Close to the pollution source needles were enriched in Ni and Cu by needle age. Correlation and principal component analyses show that changes in the element composition of pine needles depended on air pollution and on natural factors as well. The contribution from air pollution increased with needle age. Besides direct input of pollutants from atmosphere, soil contamination and nutritional disturbance contributed significantly to the observed changes.