Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

To document

Abstract

The commercial farming of Kappaphycus alvarezii in Indian waters has provided diversifying livelihood to the low-income artisanal fishermen for last 15 years. The sector has got commercial setback due to mass mortality of germplasm during 2013 – 2014. But considering its potential to provide inclusive economic growth in coastal rural settings, the government has renewed its interest in this activity. At the cusp of the strategic expansion of the seaweed sector understanding biosecurity risks, strategies and enforcement of framework is pivotal in reducing the impact of disease outbreaks, epiphytic infestations and pest attacks. The key category aspects include identification of the risks, evaluate the national health management for seaweed aquaculture, and providing potential biosecurity strategy for expanding commercial farming operations. Additionally we also enlisted the biosecurity strategy from other eucheumatoid-producing countries and nations involved in seaweed aquaculture for comparison. In-spite of advancements in science and technology, particularly in seaweed application-based solutions, health management and seaweed aquaculture biosecurity, still remain in their infancy in India. The analysis revealed that there is a complete absence of a national database of diseases, epiphytes, and grazers outbreak. Further limited clarity on a legal administrative procedures for the import of seaweed germplasm for commercial exploitation and its subsequent quarantine is a critical biosecurity risk. There is an urgent need to invest considerably in research and development related to the biosecurity of seaweeds. The rapid internet based technological development could be effectively utilised in disease reporting as well as developing farmer centric syndromic surveillance. The strengthening of regulatory frameworks and policy should be given the highest priority, as application of biosecurity has indirect effects in domains such as products development, food security, agriculture productivity, economic growth and potential regulatory ecosystem services.

To document

Abstract

Regeneration of polyploidy from young thallus segments of Kappaphycus alvarezii was optimized for genetic improvement. Kappaphycus thallus segment cultured on sterile sea water supplemented with various combinations of Indole acetic acid, Kinetin and Acardian Marine Plant Extract Powder revealed differential response on callus proliferation and development of new thallus. Presence of Acardian Marine Plant Extract Powder (3 mg/l) in combination with Indole acetic acid and Kinetin (0.01 mg/l each) had induced the longest emerging thallus. Exposure of thallus to colchicine at 0.01% with above combination was optimal to induce high frequency regeneration of polyploidy mostly from the meristematic cells. Anatomical study of colchicine induced polyploidy revealed larger cortical cells with irregular thickening of epidermal layer. Phase contrast and Scanning Electron Microscopic study revealed increase in cell size in cortical region with significantly larger number of spherical shaped carrageenan globules in colchicine induced polyploidy than normal thallus. Single cells isolated using enzymatic treatments from colchicine induced polyploidy, shown chromosome number with a ploidy status of 4n ≈ 40. Whereas in normal thallus, only half the number of chromosomes (2n ≈ 20) were observed. Polyploidy were successfully acclimatized gradually using raft method for further evaluation. This is the first report reveals the induction and regeneration of polyploidy in Kappaphycus. The possible application of this finding in genetic improvement of Kappaphycus is discussed.

To document

Abstract

Ochnaflavone is a naturally occurring biflavonoid mainly isolated from Ochna integerrima, manifests health benefits encompassing antidiabetic, anticancer, anti-cardiovascular, and anti-inflammatory activities. However, most bioactivity research has focused on in vitro experiments, rather than in vivo disease models, toxicological assessments, and human clinical trials. Moreover, a comprehensive review of the pharmacological aspects of ochnaflavone is conspicuously lacking. Thus, this review provides a concise and comprehensive summary of existing knowledge on the chemical structure, plant origin, physical properties, biotransformations, and multifaceted biological activities of ochnaflavone along with an in-depth exploration of the complex molecular mechanisms behind these activities, including signaling pathways and gene expression regulation, with the aim of promoting future theoretical needs for ochnaflavone in clinical trials and providing comprehensive insights into the research and application of this valuable natural compound.

To document

Abstract

Black Soldier Fly (Hermetia illucens [L.], Diptera: Stratiomyidae) larvae (BSFL) production from food waste is gaining interest. Food waste, a heterogeneous mix of agro-food and catering leftovers serves as a challenging feedstock for BSF growth due to its varying nutrient composition. BSF, are classified as polyphagous insects with a digestive system featuring midgut for digestion and nutrient absorption. The conversion of food waste by BSFL is heavily influenced by Enterococcus, Klebsiella, Morganella, Providencia, and Scrofimicrobium, which play a vital role in substrate utilization. These microbes determine growth patterns, longevity, oviposition, and egg hatchability, which are intricately tied to the sugar and protein content of their dietary substrates. Pre-treatment techniques including hydrothermal treatment, ionization, pulse electric field discharge, and microbial treatment showed better efficiency in improving the wet waste biomass surface area and waste recovery ratio. In terms of environmental sustainability, a life cycle assessment (LCA) of food waste to BSF conversion facility yields a low global warming potential (GWP) score of 17.36 kg CO2 per ton of functional unit with a significant environmental impact during pre-treatment of food waste at a mass-rearing of BSFL. Therefore, this review emphasizes the digestive system, and gut microbiota of BSFL, with food waste-nutrient utilization by the BSFL. Environmentally promising steps involved in the valorization of food waste resources were evaluated in detail. This review also covers the international regulations involved in food waste fed BSFL, and techno-economic assessment to optimize its valuable nutrients for the new economy in waste management with less environmental footprint.

Abstract

Horticultural food waste can be recovered to produce high-value products. Appropriate green solvents and a selection of cleaner production could unlock waste into useful resources for human health. This will significantly reduce greenhouse gas emissions, and CO2 production, and create economic opportunities to contribute to food security.

Abstract

During the cultivation of Ulva fenestrata in a land-based aquaculture system, the colonisation of the water tanks’ surfaces and eventually the macroalgal biomass by the biofouling diatom Fragilariopsis oceanica compromises the production process. Since germanium dioxide (GeO2) is an effective growth inhibitor of diatoms, this study aimed to understand how it affects the presence of F. oceanica and the photosynthesis and growth of U. fenestrata as a primary parameter contribution to the biomass production. A toxicological dose-response experiment showed that the diatom’s growth was inhibited at the low GeO2 concentration of 0.014 mg l−1. In contrast, the photosynthetic performances and growth rates of U. fenestrata remained unaffected under a wide GeO2 concentration range (0.022–2.235 mg l−1) in small- and large-scale experiments in 1-l glass beakers and 100-l Plexiglass water tanks, respectively. In the latter, the diatom density in the tanks was reduced by 40 %. The costs arising from the use of GeO2 can range between €2.35 and €8.35  kg−1 fresh weight of produced U. fenestrata biomass under growth conditions resulting in growth rates of 20 and 11.5 % d−1, respectively. GeO2 is an effective agent to control biofouling diatoms such as F. oceanica during the land-based biomass production of U. fenestrata.