Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

The natural light conditions above the Arctic Circle are unique in terms of annual variation creating special growth conditions for crop production. These include low solar elevations, very long daily photosynthetic light periods, midnight sun/absence of dark nights, and altered spectral distribution depending on solar elevation. All these factors are known to affect the growth and the metabolism of plants, although their influence on northern crop plants has not yet been reviewed. The ongoing global warming is especially affecting the temperature × light interactions in the Arctic, and understanding the impact on crop production and plant metabolism will be important for an Arctic contribution to global food production. Arctic light conditions have a strong influence on the timing of plant development, which together with temperature limits the number of cultivars suitable for Arctic agriculture. This review compiles information from the reports about the effects of light conditions at high latitudes on growth, biomass production, flowering and quality of the crop plants and discusses the gained knowledge and the key gaps to be addressed.

To document

Abstract

Fava bean (Vicia faba L.) yields are featured by high variability, influenced by the agro-environmental conditions during the growing seasons. These legume crops are sensitive to hydric and heat stresses. The adaptation depends on the efficiency of specific cultivars to use the available resources to produce biomass. This capacity is determined by the genotype and agronomical management practices. The present work aimed to uncover the influence of Baltic agro-environmental conditions (fava bean cultivar, plant density, climate, and soil features) on yield and protein content. For this, field trials were set under Baltic agro-climatic conditions, in Latvia and Estonia with five commercially available fava bean cultivars, representing broad genetic variation (‘Gloria’, ‘Julia’, ‘Jogeva’, ‘Lielplatones’, and ‘Bauska’). The results evidenced ‘Bauska’, ‘Julia’, and ‘Lielplatones’, as the most productive cultivars in terms of seed yield (4.5, 3.7, and 4.6 t ha−1, respectively) and protein yield (1.39, 1.22, and 1.36 t ha−1, respectively) under Estonian and Latvian agro-climatic conditions. Sowing these specific cultivars at densities of 30–40 seeds m−2 constitutes sustainable management for fava bean production in conventional cropping systems in the Baltic region.

To document

Abstract

The effect of cultivar and environmental variations and their interaction on anthocyanin components of strawberry were assessed for six cultivars grown in five locations from North to South of Europe in two different years. To evaluate the impact of latitude- and altitude-related factors, daily mean (Tmean), maximum (Tmax) and minimum (Tmin) temperature and global radiation accumulated for 3, 5, 10 and 15 days before fruit sampling, was analyzed. In general, fruits grown in the south were more enriched in total anthocyanin and pelargonidin-3-glucoside (pel-3-glc), the most abundant anthocyanin in strawberry. Principal component analysis (PCA) provided a separation of the growing locations within a cultivar due to latitudinal climatic differences, temporary weather changes before fruit collection and cultivation technique. PCA also depicted different patterns for anthocyanin distribution indicating a cultivar specific reaction on the environmental factors. The linear regression analysis showed that pel-3-glc was relatively less affected by these factors, while the minor anthocyanins cyanidin-3-glucoside, cyanidin-3-(6-O-malonyl)-glucoside, pelargonidin-3-rutinoside and pelargonidin-3-(6-O-malonoyl)-glucoside were sensitive to Tmax. The global radiation strongly increased cya-3-mal-glc in ‘Frida’ and pel-3-rut in ‘Frida’ and ‘Florence’. ‘Candonga’ accumulated less pel-3-glc and total anthocyanin with increased global radiation. The anthocyanin profiles of ‘Gariguette’ and ‘Clery’ were unaffected by environmental conditions.

To document

Abstract

There is increasing interest in developing urban design principles that incorporate good ecological management. Research on understanding the distribution and role of beneficial pollinating insects, in particular, is changing our view of the ecological value of cities. With the rapid expansion of the built environment comes a need to understand how insects may be affected in extensive urban areas. We therefore investigated insect pollinator capture rates in a rapidly growing and densely urbanized city (Melbourne, Australia). We identified a remnant native habitat contained within the expansive urban boundary, and established study sites at two nearby populated urban areas. We employed standard pan trap sampling techniques to passively sample insect orders in the different environments. Our results show that, even though the types of taxonomic groups of insects captured are comparable between locations, important pollinators like bees and hoverflies were more frequently captured in the remnant native habitat. By contrast, beetles (Coleoptera) and butterflies/moths (Lepidoptera) were more frequently observed in the urban residential regions. Our results suggest that the maintenance of native habitat zones within cities is likely to be valuable for the conservation of bees and the ecosystem services they provide.

Abstract

Transhumance landscapes are sensitive semi-natural environments in upland European areas. Shaped through human activities from the earliest times, they provide habitat for many threatened species and produced a rich cultural heritage. They bear witness to the complex and mutually beneficial interplay between natural resources and human activities. Today, they are threatened by societal, economic and ecological factors. The purpose of this article is to identify the roles and intangible values of transhumance systems through the analysis of three studies, in Norway, France and Spain, and to raise awareness about the benefits of continuous traditional transhumance practices for the preservation of pastoral biodiversity and the mountain landscapes’ character.

To document

Abstract

How aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared them to net ecosystem CO2 exchange (NEE) and ecosystem respiration (Reco) rates within calcareous freshwater wetlands in Everglades National Park. We continuously recorded 30-min measurements of dissolved oxygen (DO), water level, water temperature (Twater), and photosynthetically active radiation (PAR). These measurements were coupled with ecosystem CO2 fluxes over 5 years (2012–2016) in a long-hydroperiod peat-rich, freshwater marsh and a short-hydroperiod, freshwater marl prairie. Daily net aquatic primary productivity (NAPP) rates indicated both wetlands were generally net heterotrophic. Gross aquatic primary productivity (GAPP) ranged from 0 to − 6.3 g C m−2 day−1 and aquatic respiration (RAq) from 0 to 6.13 g C m−2 day−1. Nonlinear interactions between water level, Twater, and GAPP and RAq resulted in high variability in NAPP that contributed to NEE. Net aquatic primary productivity accounted for 4–5% of the deviance explained in NEE rates. With respect to the flux magnitude, daily NAPP was a greater proportion of daily NEE at the long-hydroperiod site (mean = 95%) compared to the short-hydroperiod site (mean = 64%). Although we have confirmed the significant contribution of NAPP to NEE in both long- and short-hydroperiod freshwater wetlands, the decoupling of the aquatic and ecosystem fluxes could largely depend on emergent vegetation, the carbonate cycle, and the lateral C flux.

Abstract

VIPS, an Open Source technology platform for decision-support in agriculture, is designed to initiate international collaboration and is defined as a global digital public good. Online weather data in combination with field observations serve as inputs for pest models, while model outputs can be presented in any format accustomed to end-user needs. Examples of VIPS-related collaborations to be presented include: integration of data from VIPS with FAMEWS, development of a FAW model where outputs are returned to the Farmer Interface App (FIA) of the International Institute of Tropical Agriculture (IITA), and a new initiative for coordination of existing systems into a digital plant health service in Malawi.

Abstract

Simple Summary The bird cherry-oat aphid and the fungal plant pathogen causing stagonospora nodorum blotch (SNB) are common pests of wheat. Plants are under constant attack by multiple pests and diseases but there are limited studies on the interaction between several pests on wheat. We therefore conducted controlled greenhouse and laboratory experiments to determine how these pests affected each other on a wheat plant. We found that aphid feeding predisposed wheat to fungal disease, but that aphids preferred and reproduced better on leaves that had not been infected by the fungal pathogen. These results are important to understand the interactions between multiple pests on wheat and how to develop new control strategies in future integrated pest management (IPM). Abstract Wheat plants are under constant attack by multiple pests and diseases. Until now, there are no studies on the interaction between the aphid Rhopalosiphum padi and the plant pathogenic fungus Parastagonospora nodorum causal agent of septoria nodorum blotch (SNB) on wheat. Controlled experiments were conducted to determine: (i) The preference and reproduction of aphids on P. nodorum inoculated and non-inoculated wheat plants and (ii) the effect of prior aphid infestation of wheat plants on SNB development. The preference and reproduction of aphids was determined by releasing female aphids on P. nodorum inoculated (SNB+) and non-inoculated (SNB−) wheat leaves. The effect of prior aphid infestation of wheat plants on SNB development was determined by inoculating P. nodorum on aphid-infested (Aphid+) and aphid free (Aphid−) wheat plants. Higher numbers of aphids moved to and settled on the healthy (SNB−) leaves than inoculated (SNB+) leaves, and reproduction was significantly higher on SNB− leaves than on SNB+ leaves. Aphid infestation of wheat plants predisposed the plants to P. nodorum infection and colonization. These results are important to understand the interactions between multiple pests in wheat and hence how to develop new strategies in future integrated pest management (IPM).

To document

Abstract

Light and temperature are crucial factors for the annual growth rhythm of tree seedlings of the boreal and temperate zone. Dormant, vegetative winter buds are formed under short days (SD) and altered light quality. In the conifer Norway spruce, expression of FTL2 increases and PaCOL1-2 and PaSOC1 decrease under light regimes, inducing bud set. Although temperature is known to modulate the timing of bud set, information about combined effects of light climate and temperature on bud phenology and gene expression is limited. We studied the interactive effects of temperature (18, 22/24 °C) and day extension with blue (B), red (R) or far-red (FR) light or different R:FR ratios compared to SD on growth–dormancy cycling and expression of FTL2, PaCOL1-2 and PaSOC1 in Norway spruce seedlings. Day-extension with B light and all treatments involving FR light sustained shoot elongation, with increased growth at higher temperature. The R light treatment resulted in delayed/prevented bud set compared to SD, with more delay/prevented bud set at 24 °C than 18 °C. This was associated with lower PaFTL2-transcript levels at 24 °C and more rapid subsequent bud burst. For the growth-sustaining treatments (long days, FR and B light), the PaFTL2-transcript levels were generally lower and those of PaCO1-2 and PaSOC1 higher compared with SD and R light. In conclusion, our results demonstrate more reduced/prevented bud set and faster bud burst with increased temperature under day extension with R light, indicating less deep dormancy than at lower temperature. Also, sustained shoot elongation under the B light treatment (27 µmol m−2 s−1) in contrast to the lower B light-irradiances tested previously (≤13 µmol m−2 s−1), demonstrates an irradiance-dependent effect of day extension with B light.