Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2024

Til dokument

Sammendrag

Fast regrowth from deep roots and rhizomes makes it difficult to mechanically control the perennials Cirsium arvense and Tussilago farfara respectively. It is, however, not clear whether new shoots originate mainly from fragments of roots/rhizomes in upper soil layers or from an intact system below depth of soil cultivation. Here we present results from three experiments with natural infestations of C. arvense, and two with both C. arvense and T. farfara. Plots of 1 m2 were excavated to different depths (13–25 cm), all below-ground plant parts in the topsoil were collected and thereafter fragments were either returned to or removed from the plots. Regrowth from disturbed plots with removed or returned fragments was compared. The origin of regrown shoots, that is, whether they originated from seeds, intact below-ground root/rhizome systems or returned fragments, was examined. More C. arvense shoots originated from the intact root system (48%–84%) than from root fragments (16%–52%). The final aboveground biomass was not affected by removal of the top-soil fragments. For T. farfara, a small proportion (3%) of new shoots originated from the intact rhizome system, and the rest from fragments. We conclude that the intact root system of C. arvense contributes at least as much as root fragments to regrowth after soil cultivation, which might imply that time of treatment and depth of cultivation are crucial for the effect of mechanical control. For T. farfara, the results suggest that tillage equipment with high capacity to fragment the rhizome system will contribute to efficient control.

Til dokument

Sammendrag

Stress on tree vitality is expected to increase due to climatic extremes in European forests. The decline in vitality of European beech (Fagus sylvatica L.) that has been reported recently, makes it necessary to rethink its future adaptive potential under ongoing climate change. Here we performed a pan European assessment of defoliation chronologies on 414 ICP Forests Level I beech plots, between 1995 and 2022. We investigated the temporal trends, spatial variation, tree-specific patterns as well as climate sensitivity of defoliation at plot level. Various trends emerged and we delineated the plots accordingly: 1) increasing defoliation trends indicating declining vitality (categorized as t1 plots); 2) no trends indicating stable crown condition (t2 plots); 3) decreasing defoliation trends indicating increase in vitality (t3 plots). Spatial variation was found among these plots but no regional grouping or clustering. Tree-specific patterns on 14 % plots were observed, characterized by an expressed population signal of < 0.85, indicating high inter-tree variability. Defoliation was found to be sensitive to climatic variables, mainly to temperature but also precipitation, albeit only for a small percentage of plots. Sensitivity was indicated by statistically significant (p<0.05) Pearson’s correlation coefficients. Moreover, this response depended on month of the year. Climate sensitivity of defoliation also varied across space and plots of different trend categories. It also differed along monthly water balance gradient, further indicating the role of site-specific water availability in mediating the responses to climatic variables. Our study provided basis for long-term defoliation studies, and is a crucial building block to assess beech vitality under potentially changing future climate. Furthermore, such studies will provide more insights into changes in sensitivity and adequate future sites for beech.

Til dokument

Sammendrag

Ash dieback (ADB) has been threatening populations of European ash (Fraxinus excelsior & F. angustifolia) for more than three decades. Although much knowledge has been gathered in the recent past, practical conservation measures have been mostly implemented at local scale. Since range contraction in both ash species is likely to be exacerbated already in the near future by westward expansion of the emerald ash borer and climate change, systematic conservation frameworks need to be developed to avoid long-term population-genetic consequences and depletion of genomic diversity. In this article, we address the advantages and obstacles of conservation approaches aiming to conserve genetic diversity in situ or ex situ during tree pandemics. We are reviewing 47 studies which were published on ash dieback to unravel three important dimensions of ongoing conservation approaches or perceived conservation problems: i) conservation philosophy (i.e. natural selection, resistance breeding or genetic conservation), ii) the spatial scale (ecosystem, country, continent), and iii) the integration of genetic safety margins in conservation planning. Although nearly equal proportions of the reviewed studies mention breeding or active conservation as possible long-term solutions, only 17 % consider that additional threats exist which may further reduce genetic diversity in both ash species. We also identify and discuss several knowledge gaps and limitations which may have limited the initiation of conservation projects at national and international level so far. Finally, we demonstrate that there is not much time left for filling these gaps, because European-wide forest health monitoring data indicates a significant decline of ash populations in the last 5 years.

Til dokument

Sammendrag

Forests are increasingly affected by global change. Building resilient forests requires – amongst others - leveraging the wealth of knowledge from existing ground-based, field inventory and monitoring programs as well as Earth Observation systems to better assess the status, detect changes, understand processes, predict future dynamics, and guide forest management. A proposal from the European Commission for a new forest monitoring framework at the European level aims in this direction but lacks the integration of some crucial and readily available resources and infrastructures. For this reason, the proposal risks to be a missed opportunity rather than a step forward. Here we provide suggestions to help reconciling the proposal with its objectives and a more comprehensive monitoring vision.

Til dokument

Sammendrag

Recurrent climate-driven disturbances impact on the health of European forests that reacted with increased tree dieback and mortality over the course of the last four decades. There is therefore large interest in predicting and understanding the fate and survival of forests under climate change. Forest conditions are monitored within the pan-European ICP Forests programme (UN-ECE International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests) since the 1980s, with tree crown defoliation being the most widely used parameter. Defoliation is not a cause-specific indicator of tree health and vitality, and there is a need to connect defoliation levels with the physiological functioning of trees. The physiological responses connected to tree crown defoliation are species-specific and concern, among others, water relations, photosynthesis and carbon metabolism, growth, and mineral nutrients of leaves. The indicators to measure physiological variables in forest monitoring programs must be easy to apply in the field with current state-of-the-art technologies, be replicable, inexpensive, time efficient and regulated by ad hoc protocols. The ultimate purpose is to provide data to feed process-based models to predict mortality and threats in forests due to climate change. This study reviews the problems and perspectives connected to the realization of a systematic assessment of physiological variables and proposes a set of indicators suitable for future application in forest monitoring programs.

Til dokument

Sammendrag

Background The stink bugs, Nezara viridula L. and Piezodorus guildinii Westwood (Hemiptera: Pentatomidae) are the most important and widespread species of polyphagous stink bugs in the tropical and subtropical regions of Latin America, which affect the quality and yield of the common bean (Phaseolus vulgaris L.). The use of synthetic chemical insecticides is the major control strategy to manage stink bugs in common beans and alternatives are needed. In this study, mortality and median Lethal Time (LT50) of two Cuban isolates of the entomopathogenic fungus Beauveria bassiana (18 S-O-R and 96 P-O-E), as well as one commercial Cuban isolate (Bb-18), at a concentration of 1 × 108 conidia/ml were evaluated. These evaluations were conducted against both stink bug species using Petri dish bioassays and a semi-field experiment in common beans. Results In Petri dish bioassays, the isolates 18 S-O-R and 96 P-O-E caused 100% mortality of both N. viridula and P. guildinii. This was significantly higher than for isolate Bb-18, which caused 86.3% N. viridula and 81.3% P. guildinii mortality. In the semi-field experiment, when pooling both stink bug species, total mortality after 14 days was 91.3% for 18 S-O-R, 80.0% for 96 P-O-E and 73.8% for Bb-18 isolates. LT50 value for isolate 18 S-O-R tested under laboratory conditions was 6.04 ± 0.18 days for N. viridula and 5.32 ± 0.14 days for P. guildinii at the same concentration of 1 × 108 conidia/ml. LT50 value for isolate 18 S-O-R in semi field was 6.79 ± 0.37 days for N. viridula and 7.71 ± 0.32 days for P. guildinii at 1 × 108 conidia/ml. Conclusion The study highlights the potential of B. bassiana 18 S-O-R as a promising candidate for control of stink bugs in common bean under tropical conditions as an alternative to conventional chemical insecticides in integrated pest management (IPM) programs. Moving forward, further research should focus on validating the efficacy under diverse field conditions and integrating application methods into practical IPM approaches. Future use of B. bassiana will enhance sustainability and reduce environmental impacts associated with pesticide use. Keywords Nezara viridula, Piezodorus guildinii, Entomopathogenic fungi, Hypocreales, Biological control, Common bean

Til dokument

Sammendrag

In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.