Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

One challenge in precision nitrogen (N) management is the uncertainty in future weather conditions at the time of decision-making. Crop growth models require a full season of weather data to run yield simulation, and the unknown weather data may be forecasted or substituted by historical data. The objectives of this study were to (1) develop a model-based in-season N recommendation strategy for maize (Zea mays L.) using weather data fusion; and (2) evaluate this strategy in comparison with farmers’ N rate and regional optimal N rate in Northeast China. The CERES-Maize model was calibrated using data collected from field experiments conducted in 2015 and 2016, and validated using data from 2017. At two N decision dates - planting stage and V8 stage, the calibrated CERES-Maize model was used to predict grain yield and plant N uptake by fusing current and historical weather data. Using this approach, the model simulated grain yield and plant N uptake well (R2 = 0.85–0.89). Then, in-season economic optimal N rate (EONR) was determined according to responses of simulated marginal return (based on predicted grain yield) to N rate at planting and V8 stages. About 83% of predicted EONR fell within 20% of measured values. Applying the model-based in-season EONR had the potential to increase marginal return by 120–183 $ ha−1 and 0–83 $ ha−1 and N use efficiency by 8–71% and 1–38% without affecting grain yield over farmers’ N rate and regional optimal N rate, respectively. It is concluded that the CERES-Maize model is a valuable tool for simulating yield responses to N under different planting densities, soil types and weather conditions. The model-based in-season N recommendation strategy with weather data fusion can improve maize N use efficiency compared with current farmer practice and regional optimal management practice.

To document

Abstract

Reliable and efficient in-season nitrogen (N) status diagnosis and recommendation methods are crucially important for the success of crop precision N management (PNM). The accuracy of these methods has been found to be influenced by soil properties, weather conditions, and crop management practices. It is important to effectively incorporate these variables to improve in-season N management. Machine learning (ML) methods are promising due to their capability of processing different types of data and modeling both linear and non-linear relationships. The objectives of this study were to (1) determine the potential improvement of in-season prediction of corn N nutrition index (NNI) and grain yield by combining soil, weather and management data with active sensor data using random forest regression (RFR) as compared with Lasso linear regression (LR) using similar data and simple regression (SR) models only using crop sensor data; and (2) to develop a new in-season side-dress N fertilizer recommendation strategy at eighth to ninth leaf stage (V8-V9) of corn developement using the RFR model. Twelve site-year experiments examining corn N rates and planting densities were conducted in Northeast China. The GreenSeeker sensor data and corn NNI were collected at V8-V9 stage, and grain yield was determined at the harvest stage (R6). The soil information was obtained at planting and the weather data was measured throughout the growing season. The results indicated that corn NNI and grain yield were better predicted by combining soil, weather and management information with GreenSeeker sensor data using RFR model (R2 = 0.86 and 0.79) and LR model (R2 = 0.85 and 0.76) as compared with only using GreenSeeker sensor data (R2 = 0.66 and 0.62–63) based on the test dataset. An innovative in-season side-dress N recommendation strategy was developed using the RFR grain yield prediction model to simulate corn grain yield responses to a series of side-dress N rates at V8-V9 stage. Based on these response curves, site-, and year-specific optimum side-dress N rates can be determined. The scenario analysis results indicated that this RFR model-based in-season N recommendation strategy could recommend side-dress N rates similar to those based on measured agronomic optimum N rate (AONR) or economic optimum N rate (EONR), with root mean square error (RMSE) of 17 kg ha−1 and relative error (RE) of 14–15 %. It is concluded that combining soil, weather and management information with crop sensor data using RFR can significantly improve both in-season corn NNI and grain yield prediction and N management, compared with the approach based only on crop sensor data. More studies are needed to further improve and evaluate this approach under diverse on-farm conditions.

To document

Abstract

This paper explores and sheds light on the elements, complexity, and dynamics of sociocultural adaptation to innovation and climate change in European Urban Agriculture. We use a scoping-exploratory review to search and unveil elements of sociocultural adaptation (SCA) in the existing literature on European urban agriculture. We categorize these elements into three main categories. This categorization can inform and be further explored, operationalized, and developed in new case-study-based research and serve as a starting point to better understand social adaptation to innovation and climate change in urban contexts, and beyond. Key results draw attention to (a) socio-technical and socio-ecological innovations as critical to sociocultural adaptation to innovation and climate change (b) some elements of SCA identified through the scoping review seem more central than others for the adaption process (c) we are left with the question of whether we need to bridge social science with biology sciences, such as human behavioral biology and neurobiology to find the answer to deeper questions about SCA.