Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

To document

Abstract

Air pollution has become a global problem and affects nearly all of us. Most of the pollution is of anthropogenic origin and therefore we are obliged to improve this situation. In solving this problem basically our only partners are plants with their enormous biologically active surface area. Plants themselves are also victims of air pollution but because they are sedentary they developed very efficient defence mechanisms, which can also be exploited to improve the humanosphere. For their life processes plants require intensive gas exchange, during which air contaminants are accumulated on leaf surfaces or absorbed into the tissues. Some of the pollutants are included by plants in their own metabolism while others are sequestered. In some plant species, the processes of removing pollutants from the air is conducted in a very efficient way and therefore they are used in the environmental friendly biotechnology called phytoremediation. For urban areas, outdoor phytoremediation is recommended while indoor phytoremediation can be applied in our homes and workplaces. Because in near future purifying outdoor air to protect human health and well-being does not look the most promising, an important and increasing role will be played by indoor phytoremediation.

To document

Abstract

Currently, sugar snap peas are harvested manually. In high-cost countries like Norway, such a labour-intensive practise implies particularly large costs for the farmer. Hence, automated alternatives are highly sought after. This project explored a concept for robotic autonomous identification and tracking of sugar snap pea pods. The approach was based on a combination of visible–near infrared reflection measurements and image analysis, along with visual servoing. A proof-of-concept harvesting platform was implemented by mounting a robotic arm with hand-mounted sensors on a mobile unit. The platform was tested under plastic greenhouse conditions on potted plants of the sugar snap pea variety Cascadia using LED-lights and a partial shade. The results showed that it was feasible to differentiate the pods from the surrounding foliage using the light reflection at the spectral range around 970 nm combined with elementary image segmentation and shape modelling methods. The proof-of-concept harvesting platform was tested on 48 representative agricultural environments comprising dense canopy, varying pod sizes, partial occlusions and different working distances. A set of 104 images were analysed during the teleoperation experiment. The true positive detection rate was 93 and 87% for images acquired at long distances and at close distances, respectively. The robot arm achieved a success rate of 54% for autonomous visual servoing to a pre-grasp pose around targeted pods on 22 untouched scenarios. This study shows the potential of developing a prototype robot for semi-automated sugar snap pea harvesting.

To document

Abstract

The absorption of anthropogenic CO 2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non-calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifi da , in south-eastern New Zealand. Meiospores of both kelps were released into four seawater pH treatments (pH T 7.20, extreme OA predicted for 2300; pH T 7.65, OA predicted for 2100; pH T 8.01, ambient pH; and pH T 8.40, pre-industrial pH) and cultured for 15 d. Meiospore germination, germling growth rate, and gametophyte size and sex ratio were monitored and measured. Exposure to reduced pH T (7.20 and 7.65) had pos itive effects on germling growth rate and gametophyte size in both M. pyrifera and U. pinnatifida , whereas, higher pH T (8.01 and 8.40) reduced the gametophyte size in both kelps. Sex ratio of gametophytes of both kelps was biased toward females under all pH T treatm ents, except for U. pinnatifida at pH T 7.65. Germling growth rate under OA was significantly higher in M. pyrifera compared to U. pinnatifida but gametophyte development was equal for both kelps under all seawater pH T treatments, indicating that the microscopic stages of the native M. pyrifera and the invasive U. pinnatifida will respond similarly to OA.

Abstract

Today’s modern precision agriculture applications have a huge demand for data with high spatial and temporal resolution. This leads to the need of unmanned aerial vehicles (UAV) as sensor platforms providing both, easy use and a high area coverage. This study shows the successful development of a prototype hybrid UAV for practical applications in precision agriculture. The UAV consists of an off-the-shelf fixed-wing fuselage, which has been enhanced with multi-rotor functionality. It was programmed to perform pre-defined waypoint missions completely autonomously, including vertical take-off, horizontal flight, and vertical landing. The UAV was tested for its return-to-home (RTH) accuracy, power consumption and general flight performance at different wind speeds. The RTH accuracy was 43.7 cm in average, with a root-mean-square error of 39.9 cm. The power consumption raised with an increase in wind speed. An extrapolation of the analysed power consumption to conditions without wind resulted in an estimated 40 km travel range, when we assumed a 25 % safety margin of remaining battery capacity. This translates to a maximal area coverage of 300 ha for a scenario with 18 m/s airspeed, 50 minutes flight time, 120 m AGL altitude, and a desired 70 % of image side-lap and 85 % forward-lap. The ground sample distance with an in-built RGB camera was 3.5 cm, which we consider sufficient for farm-scale mapping missions for most precision agriculture applications.