Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2017

Abstract

Important factors for development of quality defects are the physical, physiological and chemical state of the tubers, which is also described as the maturity status of the crop. The use of maturity indicators as predictors of quality in potato tubers during and after storage was explored in cvs. Asterix and Saturna with three different maturity levels during three years (2010, 2012 and 2013). The maturity indicators measured 1–3 weeks before harvest and at harvest included haulm senescence (haulm maturity), skin set (physical maturity), dry matter content (physiological maturity) and contents of sucrose, glucose and fructose (chemical maturity). Potato quality parameters were measured three times during storage (December, February and April) and included dry matter content, sucrose, glucose and fructose contents, weight loss and fry colour. Cultivar and maturity level were included as categorical predictors in a linear regression model and contributed significantly (P < 0.001) to the models predicting reducing sugars during storage. Dry matter, sucrose, glucose and fructose were included as continuous predictors in the linear regression models and contributed significantly (P < 0.01) to the sucrose, glucose and fructose models and these models explained a high proportion of the variation (R2 ≥ 0.88). Skin set contributed significantly to the weight loss models (P < 0.01) but the models showed low R2 -values (R2 < 0.48). Sucrose contents contributed significantly (P = 0.05) to the fry colour model for Asterix and the fry colour models for both Asterix and Saturna had R2 -values of 0.50 and 0.51 respectively. This study provides new information about the influence of maturity on potato quality during storage and the potential of using field measurements of maturity as predictors of storage potential for processing potato cultivars Asterix and Saturna in Norway.

Abstract

Intensive sweet cherry production in tunnel covered orchard systems offer an advantage of reducing rain-induced fruit cracking. In May 2005 four Haygrove multibay tunnel systems were installed on a gentle slope at the experimental farm at Bioforsk Ullensvang, western Norway. In these tunnels, feathered 1-year-old sweet cherry ‘Sweetheart’/Colt trees were planted with two rows at a spacing of 2×4 m in each tunnel. Each tunnel was split into two halves and covered from the end of April to beginning of September with one of two different plastic covers, having different light spectral transmittance; Luminance THB film (absorbing infrared light) and traditional Visqueen clear UV polythene film. Climatic parameters were monitored inside and outside the tunnels from the beginning of May to the beginning of September each year and yield data and fruit quality parameters were recorded. In 2009, from May 7 to September 16 the average temperature measured outside the tunnels was 14.3°C. Temperatures exceed 25°C only on two days. Temperatures inside the tunnels were 0.3°C higher on average during the entire season but exceeded 30°C on the same two hot days. Temperatures under the Luminance film were slightly lower compared to the clear film and especially reduced the temperature build up on sunny days. The harvest period was the second half of August. Average yield tree-1 was 8.8 kg (11 t ha-1) in the fourth leaf and 18.8 kg (23.5 t ha-1) fifth leaf. There were no yield differences between the two different films. Fruit size measurements found that 80% of the fruits were larger than 30 mm in diameter in the fourth leaf and 51% in the fifth leaf. Total soluble solid content was generally high (17-18%) and no significant differences were found between the different films.

To document

Abstract

Phenological observations are considered to be sensitive tools for identifying plant responses to climatic changes. Over the last 10 years, the onset of the phenophases of sweet cherry (Prunus avium L.) during spring tended to be earlier than the previous two decades in Ullensvang, western Norway. The effects of air temperature during the winter and spring months were evaluated during two quinquennia (5-year periods), 1996-2000 (Q1) and 2003-2007 (Q2) selected due to similar mean winter and early summer temperatures, but markedly different spring temperatures. Average January-February temperatures were similar (3.3°C) in both of these two 5-year periods. However, average March and April temperatures were slightly warmer (4.0 vs. 3.2°C) and (7.3 vs. 6.9°C), respectively, in Q2 vs. Q1. These increases resulted in significantly earlier flower development. Average temperatures during the first half of May were similar for both quinquennia (10.2 vs. 10.1°C). The start of flowering (first bloom) of early maturing ‘Burlat’ and mid-season ‘Van’ were significantly different. Timing of flowering phenophases were statistically different between Q1 and Q2 for both cultivars. Mean data for ‘Burlat’ and ‘Van’ first bloom were 8 days earlier during Q2, May 2 for ‘Burlat’ and May 1 for ‘Van’. Full bloom occurred 3 days after first bloom and flowering ended 14 days after first bloom. First bloom during Q2 required 221 Baskerville-Emin Growing degree days (GDD) using a base temperature of 2°C. For the same time period in Q1, only 197 GDD were accumulated, which supports the observed temperature differences. Furthermore, we propose a flowering model for full bloom of both ‘Burlat’ and ‘Van’ in Ullensvang, which requires 254 Baskerville-Emin GDD using a base of 2°C starting on March 1.

To document

Abstract

Swede is known as a healthy vegetable with a high content of vitamin C. However, very few studies have worked with the aim to evaluate how varieties, soil type and fertilizer interact and affect quality in swede. In the present study two varieties of swedes (‘Vige’ and ‘Vigod’) were grown on peat, loam and sand, with three levels of K (0, 120, 240 kg ha-1) and N fertilizer (0, 80, 160 kg ha-1). Low to moderate levels of N gave highest saleable yield, highest content of vitamin C and lowest content of nitrate. Peat soil gave highest saleable yield, lowest soluble solids and vitamin C and highest nitrate content. Soluble solids and vitamin C were negatively correlated with total root yield. Sandy soil gave lowest saleable yield, sweetest taste and lowest nitrate content. Contents of total, aliphatic, indole and individual glucosinolates, on dry matter basis, were highest on peat. N fertilization increased the content of most glucosinolates, whereas K affected glucobrassicin at the highest N level. Progoitrin was lowest in roots grown on sand, and was affected by N level and variety on sand and loam soils. Consumers preferred ‘Vigod’, which had the highest intensity of sweetness, although ‘Vige’ had more vitamin C and less nitrate.

Abstract

Farmers are exposed to climate change and uncertainty about how that change will develop. As farm incomes, in Norway and elsewhere, greatly depend on government subsidies, the risk of a policy change constitutes an additional uncertainty source. Hence, climate and policy uncertainty could substantially impact agricultural production and farm income. However, these sources of uncertainty have, so far, rarely been combined in food production analyses. The aim of this study was to determine the effects of a combination of policy and climate uncertainty on agricultural production, land use, and social welfare in Norway. Output yield distributions of spring wheat and timothy, a major forage grass, from simulations with the weatherdriven crop models, CSM-CERES-Wheat and, LINGRA, were processed in the a stochastic version Jordmod, a price-endogenous spatial economic sector model of the Norwegian agriculture. To account for potential effects of climate uncertainty within a given future greenhouse gas emission scenario on farm profitability, effects on conditions that represented the projected climate for 2050 under the emission scenario A1B from the 4th assessment report of the Intergovernmental Panel on Climate Change and four Global Climate Models (GCM) was investigated. The uncertainty about the level of payment rates at the time farmers make their management decisions was handled by varying the distribution of payment rates applied in the Jordmod model. These changes were based on the change in the overall level of agricultural support in the past. Three uncertainty scenarios were developed and tested: one with climate change uncertainty, another with payment rate uncertainty, and a third where both types of uncertainty were combined. The three scenarios were compared with results from a deterministic scenario where crop yields and payment rates were constant. Climate change resulted in on average 9% lower cereal production, unchanged grass production and more volatile crop yield as well as 4% higher farm incomes on average compared to the deterministic scenario. The scenario with a combination of climate change and policy uncertainty increased the mean farm income more than a scenario with only one source of uncertainty. On the other hand, land use and farm labour were negatively affected under these conditions compared to the deterministic case. Highlighting the potential influence of climate change and policy uncertainty on the performance of the farm sector our results underline the potential error in neglecting either of these two uncertainties in studies of agricultural production, land use and welfare.

To document

Abstract

BACKGROUND Broccoli (Brassica oleracea L. var. italica) is a popular vegetable grown at a wide range of latitudes. Plants were grown in 2009–2011 in pots with standardized soil, irrigation and nutrient supply under natural temperature and light conditions at four locations (42–70° N). A descriptive sensory analysis of broccoli florets was performed by a trained panel to examine any differences along the latitudinal gradient for 30 attributes within appearance, odour, taste/flavour and texture. RESULTS Average results over three summer seasons in Germany, southern Norway and northern Norway showed that the northernmost location with low temperatures and long days had highest scores for bud coarseness and uniform colour, while broccoli from the German location, with high temperatures and shorter days, had highest intensity of colour hue, whiteness, bitter taste, cabbage flavour, stale flavour and watery flavour. Results from two autumn seasons at the fourth location (42° N, Spain), with low temperatures and short days, tended toward results from the two northernmost locations, with an exception for most texture attributes. CONCLUSION Results clearly demonstrate that temperature and light conditions related to latitude and season affect the sensory quality of broccoli florets. Results may be used in marketing special quality regional or seasonal products. © 2016 Society of Chemical Industry

Abstract

Optimization of produce quality and storage conditions to reduce loss during long-term storage of root vegetables in Norway (OPTIROOT, 2016-2019) Authors: Thomsen, M.G., Indergaard, E., Asalf, B., Heltoft, P., Wold, A.B., Nordskog, B., Guren, G, Dyste, J. & Larsen, H. Author’s affiliation: Key words: carrot, swede, celeriac, storage technology, diseases, physiological disorder, packaging, nutrition Reducing yield loss along the supply chains is important for resource sustainability in vegetable production. Norwegian root vegetables are typically stored 6 to 8 months before consumption, often resulting in 20-30% loss post harvest. In OptiRoot 26 producers, refrigeration-technology companies, sensor developer, grower’s organisation, agricultural advisory service, and four research institutes are cooperating and conducting research to improve storage quality of carrot, swede and celeriac. The research focuses on: i) Fertilizer/Boron deficiency affects the storage quality of root vegetables and amount, methods of application, and timing of boron are studied in swede and celeriac. ii) Interaction between storage conditions/functions and produce quality of the root vegetables through mapping of technical features of 27 storages. The storage conditions recorded are relative humidity, air movement, temperature in boxes and storages, and physical features of storages. In addition, the physiological and health status of the produces are assessed one week before harvest, postharvest and post-storage. The prevalence of fungal diseases or disorders varied from region to region and between storages. iii) Effects of pre-storage wound healing are tested using seven different temperature strategies (direct to 0° C vs. down 0.2° C per day vs. 1° C per day) and low/high humidity in carrot (2016/17/18), celeriac and swede (2017/18/19). Preliminary results show that wound healing reduced loss due to fungal infections in carrot iv) CO2 concentration, temperature and relative humidity were recorded over time inside carrot storage bin liners with different numbers of perforations. An initial screening indicated a positive correlation between number of holes and number of fresh roots. As a post storage method, coating of swede with chitosan oligomers will be tested to inhibit growth of post-harvest pathogens. In conclusion, OptiRoot have gained good progress and promising preliminary results by connecting data on biology and technology for reduction of loss during long-term storage.

To document

Abstract

This paper aims to study the impact of biogas technology adoption as a livestock waste technology to support Mixed Crop and Livestock (MCL) farming among smallholder farmers in Indonesia. A cross sectional survey was conducted to collect data from 351 farm households (171 biogas adopters and 180 non-adopters) in the province of Yogyakarta. This study employed treatment effects analysis based on propensity score matching techniques to evaluate the impacts of biogas technology adoption among the farm households. The results showed that the adoption of the biogas technology reduces firewood consumption of smallholder farm households in Indonesia. Unfortunately, the impact on the use of slurry for organic fertilizers and the use of gas (Liquid Petroleum Gas, LPG) as another household cooking energy could not be evaluated. This study empirically showed that the benefits of the biogas technology had not yet been optimized at the household level which may partly explain the slow rate of biogas technology diffusion among farmers. However, the consumption reduction of firewood as a benefit of using biogas contributed to behavioral changes of the women in the households especially with respect to firewood collection and cooking activities.

To document

Abstract

We propose a theoretical framework for the relationship between animal welfare and the economic performance of livestock farms. We empirically analyse this relationship based on a unique dataset of randomly sampled Danish pig herds that includes information from unannounced inspections of the compliance with the animal welfare legislation. We find large variations in economic performance and animal welfare. The relationship between these two indicators is rather weak, but tends to be slightly positive. A possible explanation for our results is that management has a major influence on both economic performance and animal welfare so that good farm managers are able to meet all animal welfare regulations, while achieving a high economic performance.