Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2020

Abstract

The site-specific nutrient management (SSNM) strategy provides guidelines for effective nitrogen, phosphorus and potassium management to help farmers make better decisions on fertilizer input and output levels in rice (Oryza sativa) production. The SSNM fertilizer recommendations are based on the yield goal approach, which has been frequently cited in empirical studies. This study evaluates the assumptions underlying the SSNM strategy for rice in the top rice-producing countries around the world, including India, Indonesia, the Philippines, Thailand, and Vietnam. Using a generalized quadratic production function, I explore whether major nutrients are substitutes as inputs and if there are complementarities between inorganic fertilizer and soil organic matter (SOM). The results suggest the relationships among major nutrients vary across sites—some inputs are complements, some are substitutes, and some are independent. The SOM also significantly affects the nitrogen fertilizer uptake. I conclude by suggesting that the SSNM strategy can be made to be more adaptive to farmer’s fields if these relationships are accounted for in the fertilizer recommendation algorithm.

Abstract

This chapter emphasizes the need for active stakeholder engagement right through from strategy development to planning and implementation, to realize the benefits of sustainable bioeconomy development. In general, this varies between regions and countries. In the EU, it is considered important to engage stakeholders at all stages, whereas in developing countries engaging stakeholders so far has not been given much importance when launching new strategies. Stakeholders, including the private sector, research institutions, farmers organizations, the government and non-governmental organizations, all have important roles to play. The chapter focuses on the why, how and what type of stakeholders should be engaged, and the relevant benefits and challenges. It discusses experiences from the EU and other regions where stakeholder engagement (both formal and informal) and participative governance have led to or are necessary for successful and sustainable bioeconomy development.

To document

Abstract

In the last two decades, attention on forests and ownership rights has increased in different domains of international policy, particularly in relation to achieving the global sustainable development goals. This paper looks at the changes in forest-specific legislation applicable to regular productive forests, across 28 European countries. We compare the legal framework applicable in the mid-1990s with that applicable in 2015, using the Property Rights Index in Forestry (PRIF) to measure changes across time and space. The paper shows that forest owners in most western European countries already had high decision-making power in the mid-1990s, following deregulation trends from the 1980s; and for the next two decades, distribution of rights remained largely stable. For these countries, the content and direction of changes indicate that the main pressure on forest-focused legislation comes from environmental discourses (e.g. biodiversity and climate change policies). In contrast, former socialist countries in the mid-1990s gave lower decision-making powers to forest owners than in any of the Western Europe countries; over the next 20 years these show remarkable changes in management, exclusion and withdrawal rights. As a result of these changes, there is no longer a clear line between western and former socialist countries with respect to the national governance systems used to address private forest ownership. Nevertheless, with the exception of Baltic countries which have moved towards the western forest governance system, most of the former socialist countries still maintain a state-centred approach in private forest management. Overall, most of the changes we identified in the last two decades across Europe were recorded in the categories of management rights and exclusion rights. These changes reflect the general trend in European forest policies to expand and reinforce the landowners’ individual rights, while preserving minimal rights for other categories of forest users; and to promote the use of financial instruments when targeting policy goals related to the environmental discourse.

Abstract

The term Circular Regulations (CR) is introduced to describe a broad regulatory framework, designed with a circular understanding of the economy. Central in this discussion is the transition towards bioeconomy, a term that is not always used consistently, and sometimes treated in the same way as circular economy (CE), although these terms are not necessarily equivalent. In this article we endorse a systemic interpretation of CE, where a continuum of approaches, extending from reusing/recycling/upcycling to refuse/rethink/reduce, gradually replace existing linear “end-of-life” concepts. CE is a key prerequisite for the bioeconomy shift, a transition that further builds on CE, where circular design and processes are further augmented with increased resource utilization and intensive applications of innovative science and technology. The prevailing regulatory arrangements in CE, however, remain either fragmented or largely based on pre-existing policies, drafted to address issues of the linear economy, thus presenting several limitations when dealing with the underlying paradigm shift: complex market relationships that go beyond the standard neoclassical model. CR adopts an encompassing approach to regulatory design; it is not meant to be a rigid set of rules, but rather a regulatory framework where institutions, market rules, and business practice explicitly account for environmental and socially responsible activities, while securing an enabling environment for innovation. CR directly reflects on CE, where bioeconomy growth is informed by science, enabled by technology, driven by business, and supported by relevant policies and institutional frameworks. The article presents a conceptual setting towards CR and a practical example for its development.

Abstract

Key words: Ursus maritimus, CITES, polar bear, Non-Detriment Finding, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, VKM Background: Canada is the only nation in the world that allows commercial export of polar bear products harvested from its own wild populations. Norway is among the destinations for exported material. Polar bears are listed on CITES appendix II and on list B of the Norwegian CITES Regulation. Import of harvested polar bears to Norway requires both export permits from the Canadian CITES authorities and import permits from the Norwegian Environment Agency. Consequently, a Non-Detriment Finding (NDF) is mandated and was commissioned by the Norwegian Environment Agency (Norwegian Management Authority for CITES) to the Norwegian Scientific Committee for Food and Environment (VKM) (Norway’s CITES Scientific Authority). The NDF is a scientific risk assessment evaluating whether or not international trade can be detrimental to the survival of polar bears. The risk assessment may also be used by the Norwegian Environment Agency to assess whether the polar bears should be placed on Norwegian CITES list A. Currently, the IUCN/SSC Polar Bear Specialist Group (PBSG) recognizes 19 subpopulations of polar bears in the circumpolar Arctic, of which 13 reside wholly (9) or partly (4) in Canada. Together, these 13 populations account for about two thirds of the world’s total polar bear population. This risk assessment considers the populations that are within the hunting areas. Methods: VKM has reviewed current knowledge about polar bear biological characteristics, population status and trends in subpopulations. Scenarios for the future development of the Arctic environment, to which the species is inextricably adapted, are presented. Habitat loss due to declining sea ice is widely recognized as the main threat to polar bears, and this, as well as other obstacles to the species survival, has been evaluated. The various legislations, regulations and monitoring regimes of the range countries are briefly summarised. Moreover, international trade in polar bear products has been analysed. VKM has further undertaken an assessment of data quality and uncertainties. In order to gain access to the most recent information on polar bear biology and management, four scientists from the PBSG were interviewed and the transcripts of the interviews (with consent from the hearing experts) are attached to this report. Results: The best scientific knowledge available for polar bears in Canada suggests that four subpopulations are in decline, two are stable, and one is increasing, while the population trends for the remaining subpopulations are unknown. Noteworthy, all the estimates of population size are highly uncertain. Survey methods also changed between the 2008 and 2018 population estimates used for quota setting. Moreover, data are in most areas collected too infrequently to detect rapid changes in population size. Particularly, under changing environmental conditions. The prognosis for the Arctic marine environment points towards continuing habitat loss and inevitably further decline for the polar bear population. Analyses of data from the CITES trade database reveal a dynamic international market for polar bear products with significant changes in destination countries and the purpose for transactions. The United States was the main importer of polar bear products, mainly hunting trophies, until listing the polar bear as a threatened species in 2008. In more recent years, China has become the major importer, with hides being the preferred product. Simultaneously with these changes, there has been a significant increase in the price of polar bear hides. Conclusion: Several polar bear subpopulations are in decline. Predictions of continuing habitat loss points to further decline. While not the main threat to polar bear survival, international trade .......

To document

Abstract

1. Ecological network theory hypothesizes that the structuring of species interactions can convey stability to the system. Investigating how these structures react to species loss is fundamental for understanding network disassembly or their robustness. However, this topic has mainly been studied in‐silico so far. 2. Here, in an experimental manipulation, we sequentially removed four generalist plants from real plant–pollinator networks. We explored the effects on, and drivers of, species and interaction disappearance, network structure and interaction rewiring. First, we compared both the local extinctions of species and interactions and the observed network indices with those expected from three co‐extinction models. Second, we investigated the trends in network indices and rewiring rate after plant removal and the pollinator tendency at establishing novel links in relation to their proportional visitation to the removed plants. Furthermore, we explored the underlying drivers of network assembly with probability matrices based on ecological traits. 3. Our results indicate that the cumulative local extinctions of species and interactions increased faster with generalist plant loss than what was expected by co‐extinction models, which predicted the survival or disappearance of many species incorrectly, and the observed network indices were lowly correlated to those predicted by co‐extinction models. Furthermore, the real networks reacted in complex ways to plant removal. First, network nestedness decreased and modularity increased. Second, although species abundance was a main assembly rule, opportunistic random interactions and structural unpredictability emerged as plants were removed. Both these reactions could indicate network instability and fragility. Other results showed network reorganization, as rewiring rate was high and asymmetries between network levels emerged as plants increased their centrality. Moreover, the generalist pollinators that had frequently visited both the plants targeted of removal and the non‐target plants tended to establish novel links more than who either had only visited the removal plants or avoided to do so. 4. With the experimental manipulation of real networks, our study shows that despite their reorganizational ability, plant–pollinator networks changed towards a more fragile state when generalist plants are lost.

To document

Abstract

Key words: VKM, risk assessment, Norwegian Scientific Committee for Food and Environment, Norwegian Environment Agency, Norwegian Food Safety Authority Introduction: The Norwegian Environment Agency and the Norwegian Food Safety Authority asked the Norwegian Scientific Committee for Food and Environment to assess the risk to Norwegian biodiversity, to the productivity of native salmonid populations, and to aquaculture, from the spread and establishment of pink salmon in Norwegian rivers, and to assess mitigation measures to prevent the spread and establishment of this alien species. Pink salmon is native to rivers around the northern Pacific Ocean. The species usually has a strict two-year life cycle, with populations spawning in even and odd years being genetically isolated. Fertilized eggs of pink salmon were transferred from Sakhalin Island to Northwest Russia in the late 1950s, and fry were released in rivers draining to the White Sea. The first abundant return to rivers in Northwest Russia, as well as to Norway and other countries in northwestern Europe, was recorded in 1960. Stocking with fish from Sakhalin was terminated in 1979. By then, no self-sustaining populations had been established. From 1985 onwards, stocking in White Sea rivers was resumed with fish from rivers in the more northerly Magadan oblast on the Russian Pacific, resulting in the establishment of reproducing populations. Stocking was continued until 1999, when the last batch of evenyear fertilized eggs was imported, and the fry released in spring 2000. Thus, all pink salmon caught after 2001 in the Northeast Atlantic and the Atlantic side of the Arctic Ocean including the Barents Sea, as well as in rivers draining into these seas, are the result of reproduction in the wild. Pink salmon is now established with abundant and increasing stocks in Northwest Russia and regular occurrence in rivers in eastern Finnmark. Catches of odd-year adult pink salmon in Northwest Russia were usually below 100 tonnes before 2001 and increased to an annual average of 220.5 tonnes during the period 2001-2017. Even-year returns are smaller than odd-year returns both in Northwest Russia and in Norway. The number of pink salmon recorded in Norwegian rivers peaked in 2017, with a high number of fish in eastern Finnmark, and substantial numbers recorded in rivers all along the coast of Norway and in other European countries. In 2019, the area with abundant returns expanded in comparison with 2017, to include rivers in western Finnmark and Troms. The recorded numbers were perhaps lower in southern Norway in 2017 than in 2019 (full statistics not available when this report was finalised), but also in southern Norway there were more pink salmon in 2019 than in any year before 2017. The large numbers of pink salmon in western Finnmark and Troms in 2019 may indicate an expansion of the area in Norway with abundant odd-year pink salmon returns. In some small rivers in eastern Finnmark, between 1000 and 1500 pink salmon were fished out by local people in 2019, demonstrating the magnitude of the potential impact in terms of numbers of pink salmon. We cannot rule out that this will not happen over larger parts of Norway in the coming years. The even-year strain of pink salmon only occurs in low numbers in Russian rivers, as well as Norwegian, rivers. Adult pink salmon enter the rivers from early July, and spawning occurs in AugustSeptember. Spawning habitat requirements are like those of native salmonids: Atlantic salmon, brown trout, and Arctic charr. Spawning of pink salmon occurs earlier than the native salmonids, but observations in 2019 indicate a possible overlap with native salmonids in September in northern Norway. . Pink salmon eggs hatch in late winter or spring, and the alevins remain in the gravel until most of the yolk sac has been resorbed. Emerging fry are approximately 30 mm in length. ...................

To document

Abstract

Global economic value of agriculture production resulting from animal pollination services has been estimated to be $235–$577 billion. This estimate is based on quantification of crops that are available at the global markets, and mainly originates from countries with precise information about quantities of agriculture production, exports, and imports. In contrast, knowledge about the contribution of pollinators to household food and income in small-scale farming at local and regional scales is still lacking, especially for developing countries where the availability of agricultural statistics is limited. Although the global decline in pollinator diversity and abundance has received much attention, relatively little effort has been directed towards understanding the role of pollinators in small-scale farming systems, which feed a substantial part of the world’s population. Here, we have assessed how local farmers in northern Tanzania depend on insect-pollinated crops for household food and income, and to what extent farmers are aware of the importance of insect pollinators and how they can conserve them. Our results show that local farmers in northern Tanzania derived their food and income from a wide range of crop plants, and that 67% of these crops depend on animal pollination to a moderate to essential degree. We also found that watermelon—for which pollination by insects is essential for yield—on average contributed nearly 25% of household income, and that watermelons were grown by 63% of the farmers. Our findings indicate that local farmers can increase their yields from animal pollinated crops by adopting more pollinator-friendly farming practices. Yet, we found that local farmers’ awareness of pollinators, and the ecosystem service they provide, was extremely low, and intentional actions to conserve or manage them were generally lacking. We therefore urge agriculture authorities in Tanzania to act to ensure that local farmers become aware of insect pollinators and their important role in agriculture production.