Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2004

Abstract

Chitosan, a derivate of the natural amino polysaccharide chitin, has proven effective as a potential environmentally benign antimicrobial component. Few studies have focused on chitosan applied to wood against wood inhabiting and decaying fungi.In these screening studies several mycological experiments were performed to screen chitosan as a potential wood protecting agent. Growth studies on chitosan-amended media showed total inhibition of Poria placenta, Coriolus versicolor and Aspergillus niger using 1% w/v concentration.Chitosan with high average molecular weight (MW) was more efficient against mould and staining fungi than chitosan with low MW. Agar plate leaching tests showed only a small leaching effect using a 5% concentration on A. niger and P. placenta. Decay testing with P. placenta demonstrated efficacy using 5% and 2.5% concentrations in unleached samples. Leaching decreased the efficacy of chitosan and further investigations are needed to improve the fixation in wood.

Abstract

Utvalgt Forelesning/Selected Talk: Survival and competitive successes of boreal forest trees depend on a balance between exploiting the full growing season and minimising frost injury through proper timing of hardening in autumn and dehardening in spring. Our research has shown that the female parents of Norway spruce adjust these timing events in their progeny according to the prevailing temperature conditions during sexual reproduction. Reproduction in a cold environment advances bud-set and cold acclimation in the autumn and dehardening and flushing in spring, whereas a warm reproductive environment delays these progeny traits by an unknown non-Mendelian mechanism. We have performed identical crosses in combination with timed temperature treatments during shorter and longer periods from female meiosis, pollen tube growth, syngamy and embryogenesis, tested the progenies for bud-set and frost hardiness, and concluded that the effect of temperature most likely is a response to accumulated heat during embryogenesis and seed maturation. Our first attempt to look for a molecular mechanism has revealed that transcription of PHYO, PHYP and PHYN and the class IV chitinase PaChi4 (using RealTime PCR) all show higher transcription levels in progenies born under cold conditions than their full-sibs born under warmer conditions. This result is consistent with preliminary findings that methylation of cytosine in total DNA is higher in progenies reproduce under warm conditions than their colder full-sib counterparts. If these observations are related to methylation, we may explain why progenies with a memory of a past time cold embryogenesis are more sensitive to short days than their full-sibs with a warmer embryonic history.

Abstract

Research indicate that the female parents of Norway spruce adjust these timing events in their progeny according to the prevailing temperature conditions during seed development. Reproduction in a cold environment advances bud-set and cold acclimation in the autumn and dehardening and flushing in spring, whereas a warm reproductive environment delays these progeny traits by an unknown non-Mendelian mechanism. We have performed identical crosses in combination with timed temperature treatments during shorter and longer periods from female meiosis, pollen tube growth, syngamy and embryogenesis, tested the progenies for bud-set and frost hardiness, and concluded that the effect of temperature most likely is a response to accumulated heat during embryogenesis and seed maturation. Our first attempt to look for a molecular mechanism has revealed that transcription of PHYO, PHYP and PHYN and the class IV chitinase PaChi4 (using RealTime PCR) all show higher transcription levels in progenies born under cold conditions than their full-sibs born under warmer conditions. This result is consistent with preliminary findings that methylation of cytosine in total DNA is higher in progenies reproduce under warm conditions than their colder full-sib counterparts. If these observations are related to methylation, we may explain why progenies with a memory of a past time cold embryogenesis are more sensitive to short days than their full-sibs with a warmer embryonic history.

Abstract

Artikkelen er basert på resultater fra et nordisk kurs i kalibrering av apparater for måling av CO2-frigivelse fra jord. Geir Østreng deltok på kurset med det apparatet som er brukt bl.a. i SIP Karbondynamikk i skogsjord 2000-2005, og han er medforfatter.

Abstract

Introduction: The objectives of the present study were to monitor H. annosum colonization rate (Hietala et al., 2003) and expression of host chitinases in clonal Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR.Material and MethodsInoculation experiment: Ramets of two 32 -year-old clones differing in resistance were employed as host material. Inoculation and wounding was performed. A rectangular strip containing phloem and cambium, with the inoculation site in the middle, was removed 3, 7 and 14 days after inoculation.Quantification of fungal colonizationMultiplex real-time PCR detection of host and pathogen DNA was performed (Hietala et al., 2003). Quantification of gene expression: Chitinase levels were monitored with Singleplex real-time PCR.Results and ConclusionsThe colonization profiles provided by the quantitative multiplex real-time PCR procedure (Hietala et al., 2003), when combined with spatial and temporal transcript profiling of 3 chitinases, provide a useful basis for identifying defense related genes, and for assessing their impact on pathogen colonization rates.Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak (409) clone.Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of chitinase-related signalperception.

Abstract

We have monitored the H. annosum colonization rate and expression of host chitinases in Norway spruce material with differing resistances. Transcript levels of three chitinases, representing classes I, II and IV, were monitored with real-time PCR. Ramets of two 32 -year-old clones differing in resistance were employed as host material and inoculation and wounding was performed. Quantification of fungal colonization: Multiplex real-time PCR detection of host and pathogen DNA was performed. Chitinase transcript levels were also monitored with real-time PCR. Three days after inoculation, comparable colonization levels were observed in both clones in the area immediately adjacent to inoculation. Fourteen days after infection, pathogen colonization was restricted to the area immediately adjacent to the site of inoculation for the strong clone (589), but had progressed further into the host tissue in the weak clone (409). Transcript levels of the class II and IV chitinases increased following wounding or inoculation, while the transcript level of the class I chitinase declined following these treatments. Transcript levels of the class II and class IV chitinases were higher in areas immediately adjacent to the inoculation site in 589 than in similar sites in 409 three days after inoculation, suggesting that the clones differ in the rate of chitinase-related signal perception. The spatiotemporal accumulation patterns obtained for the two clones used are consistent with their resistance classifications, these warranting further and more detailed studies on these chitinases.