Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

Til dokument

Sammendrag

Airborne laser scanning data and corresponding field data were acquired from boreal forests in Norway and Sweden, coniferous and broadleaved forests in Germany and tropical pulpwood plantations in Brazil. Treetop positions were extracted using six different algorithms developed in Finland, Germany, Norway and Sweden, and the accuracy of tree detection and height estimation was assessed. Furthermore, the weaknesses and strengths of the methods under different types of forest were analyzed. The results showed that forest structure strongly affected the performance of all algorithms. Particularly, the success of tree detection was found to be dependent on tree density and clustering. The differences in performance between methods were more pronounced for tree detection than for height estimation. The algorithms showed a slightly better performance in the conditions for which they were developed, while some could be adapted by different parameterization according to training with local data. The results of this study may help guiding the choice of method under different forest types and may be of great value for future refinement of the single-tree detection algorithms.

Sammendrag

Wood for outdoor decking has a high market share in the Nordic and Baltic countries among private house owners. Important issues for the consumer are maintenance intervals and aesthetic appearance as well as decay resistance. Knowledge and consumer information about these aspects are required to ensure that wood can compete with alternative decking materials. In this paper an accelerated testing of decking, “stapelbädds metoden”, was evaluated after ten years of exposure at Ås, Norway. The test method covers different hazard situations within use class 3. Different preservatives and wood modification treatments were used in addition to untreated Scots pine (sapwood and heartwood) and larch (heartwood). The samples were treated with two different surface treatments. In addition there was one set without any surface treatment. Fungal discoloration and decay was evaluated. This provided new information about performance both on and above ground for a range of different combinations of preservative/modified systems and surface treatments of wood in decking for outdoor use. Generally, there were no significant differences in performance between the surface treatments, both with regard to surface discolouring fungi and decay fungi. For all surface treatments, the samples with rating 3 (heavy attack) in bottom layer in one or several stacks was: Tanalith M, Tanalith M (c), Gori Pres 10, Scanimp, styren, furfurylation, thermal modification, Ultrawood, larch heartwood, pine heartwood and pine sapwood. For all surface treatments, the samples with mean rating ≤ 2 (evident attack) in top and middle layer in one or several stacks was: ACQ 1900, Wolmanit CX 8, Tanalith E7, Gori SC 100, Royal, Royal with pigment, Scanimp, styrene and larch heartwood

Til dokument

Sammendrag

Fire is the most important ecological factor governing boreal forest stand dynamics. In low- to moderate-severity fires, the post-fire growth of the surviving trees varies according to fire frequency, intensity and site factors. Little is known about the growth responses of Scots pine (Pinus sylvestris L.) following fires in boreal forests. We quantified changes in tree growth in the years following 61 historical forest fires (between 1210 and 1866) in tree-ring series collected from fire-scarred Scots pine trees, snags and stumps in Trillemarka nature reserve in south-central Norway. Basal area increment 10 years pre-, 5 years post-, and 11-20 years post-fire were calculated for 439 fire scars in 225 wood samples. We found a slight temporary growth reduction 5 years post-fire followed by a marked growth increase 11-20 years post-fire. Beyond 20 years post-fire, the long-term tree growth declined steadily up to approximately 120 years. Our results indicate that recurring fires maintained high tree growth in remnant Scots pines, most probably due to a reduction in tree density and thus decreased competition.

Sammendrag

Harvest activity directly impacts timber supply, forest conditions, and carbon stock. Forecasts of the harvest activity have traditionally relied on the assumption that harvest is carried out according to forest management guidelines or to maximize forest value. However, these rules are, in practice, seldom applied systematically, which may result in large discrepancies between predicted and actual harvest in short-term forecasts. We present empirical harvest models that predict final felling and thinning based on forest attributes such as site index, stand age, volume, slope, and distance to road. The logistic regression models were developed and fit to Norwegian national forest inventory data and predict harvest with high discriminating power. The models were consistent with expected landowners behavior, that is, areas with high timber value and low harvest cost were more likely to be harvested. We illustrate how the harvest models can be used, in combination with a growth model, to develop a national business-as-usual scenario for forest carbon. The business-as-usual scenario shows a slight increase in national harvest levels and a decrease in carbon sequestration in living trees over the next decade.

Sammendrag

The Norwegian National Forest Inventory (NNFI) provides estimates of forest parameters on national and regional scales by means of a systematic network of permanent sample plots. One of the biggest challenges for the NNFI is the interest in forest attribute information for small sub-populations such as municipalities or protected areas. Frequently, too few sampled observations are available for such small areas to allow estimates with acceptable precision. However, if an auxiliary variable exists that is correlated with the variable of interest, small area estimation (SAE) techniques may provide means to improve the precision of estimates. The study aimed at estimating the mean above-ground forest biomass for small areas with high precision and accuracy, using SAE techniques. For this purpose, the simple random sampling (SRS) estimator, the generalized regression (GREG) estimator, and the unit-level empirical best linear unbiased prediction (EBLUP) estimator were compared. Mean canopy height obtained from a photogrammetric canopy height model (CHM) was the auxiliary variable available for every population element. The small areas were 14 municipalities within a 2,184 km2 study area for which an estimate of the mean forest biomass was sought. The municipalities were between 31 and 527 km2 and contained 1–35 NNFI sample plots located within forest. The mean canopy height obtained from the CHM was found to have a strong linear correlation with forest biomass. Both the SRS estimator and the GREG estimator result in unstable estimates if they are based on too few observations. Although this is not the case for the EBLUP estimator, the estimators were only compared for municipalities with more than five sample plots. The SRS resulted in the highest standard errors in all municipalities. Whereas the GREG and EBLUP standard errors were similar for small areas with many sample plots, the EBLUP standard error was usually smaller than the GREG standard error. The difference between the EBLUP and GREG standard error increased with a decreasing number of sample plots within the small area. The EBLUP estimates of mean forest biomass within the municipalities ranged between 95.01 and 153.76 Mg ha−1, with standard errors between 8.20 and 12.84 Mg ha−1.