Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

While interspecific variation in microbiome composition can often be readily explained by factors such as host species identity, there is still limited knowledge of how microbiomes vary at scales lower than the species level (e.g., between individuals or populations). Here, we evaluated variation in microbiome composition of individual parasites among infrapopulations (i.e., populations of parasites of the same species living on a single host individual). To address this question, we used genome-resolved and shotgun metagenomic data of 17 infrapopulations (balanced design) of the permanent, bloodsucking seal louse Echinophthirius horridus sampled from individual Saimaa ringed seals Pusa hispida saimensis. Both genome-resolved and read-based metagenomic classification approaches consistently show that parasite infrapopulation identity is a significant factor that explains both qualitative and quantitative patterns of microbiome variation at the intraspecific level. This study contributes to the general understanding of the factors driving patterns of intraspecific variation in microbiome composition, especially of bloodsucking parasites, and has implications for understanding how well-known processes occurring at higher taxonomic levels, such as phylosymbiosis, might arise in these systems.

To document

Abstract

Wildlife species living in proximity with humans often suffer from various anthropogenic factors. Here, we focus on the endangered Saimaa ringed seal (Pusa hispida saimensis), which lives in close connection with humans in Lake Saimaa, Finland. This unique endemic population has remained landlocked since the last glacial period, and it currently consists of only ~400 individuals. In this review, we summarize the current knowledge on the Saimaa ringed seal, identify the main risk factors and discuss the efficacy of conservation actions put in place to ensure its long-term survival. The main threats for this rare subspecies are bycatch mortality, habitat destruction and increasingly mild winters. Climate change, together with small population size and an extremely impoverished gene pool, forms a new severe threat. The main conservation actions and priorities for the Saimaa ringed seal are implementation of fishing closures, land-use planning, protected areas, and reduction of pup mortality. Novel innovations, such as provisioning of artificial nest structures, may become increasingly important in the future. Although the Saimaa ringed seal still faces the risk of extinction, the current positive trend in the number of seals shows that endangered wildlife populations can recover even in regions with considerable human inhabitation, when legislative protection is combined with intensive research, engagement of local inhabitants, and innovative conservation actions. Such multifaceted conservation approaches are needed in a world with a growing human population and a rapidly changing climate.

To document

Abstract

This study evaluated the effects of bio-based carbon materials on methane production by anaerobic digestion. The results showed that biochar and hydrochar can promote cumulative methane yield by 15% to 29%. However, there was no statistical significance (p > 0.05) between hydrochar and biochar produced at different temperature on methane production. 16S rRNA gene sequencing and bioinformatics analysis showed that biochar and hydrochar enriched microorganism that might participate in direct interspecies electron transfer (DIET) such as Pseudomonadaceae, Bacillaceae, and Clostridiaceae. The the surface properties of the modified biochar were characterized with BET, Raman, FTIR and XPS. Bio-based carbon materials with uniform dispersion provided a stable environment for the DIET of microorganisms and electrons are transferred through aromatic functional groups on the surface of materials. This study reveals bio-based carbon materials surface properties on methane production in anaerobic digestion and provides a new approach to recycling spent coffee grounds.

To document

Abstract

Syngas from pyrolysis/gasification process is a mixture of CO, CO2 and H2, which could be converted to CH4, so called syngas biomethanation. Its development is obstructed due to the low productivity and CO inhibition. The aim of this study was to demonstrate the feasibility of using syngas as the only carbon source containing high CO concentration (40%) for biomethanation. Lab-scale thermophilic bioreactor inoculated with anaerobic sludge was operated continuously for over 900 h and the shift of microbial structure were investigated. Results showed that thermophilic condition was suitable for syngas biomethanation and the microbes could adapt to high CO concentration. Higher processing capacity of 12.6 m3/m3/d was found and volumetric methane yield of 2.97 m3/m3/d was observed. These findings could strengthen the theoretical basis of syngas biomethanation and support its industrialization in the future.

To document

Abstract

With the development of the world economy and society, the living standards of residents have been improved, along with a large amount of food waste and carbon dioxide (CO2) emissions. In the face of global warming and energy shortages, food waste can be used as high-value bio-energy raw materials which is also an effective way to reduce CO2 emissions. Therefore, this paper proposes a novel anaerobic digestion and CO2 emissions efficiency analysis based on a Slacks-Based Measure integrating Data Envelopment Analysis (SBM-DEA) model to evaluate and optimize the process structure of anaerobic treatment of food waste. The total feed volume and the discharge volume of liquid digestate are taken as inputs, and the total methane (CH4) production volume is taken as the desirable output and CO2 emissions are regarded as the undesirable output to build the biogas production and CO2 emissions evaluation model during the anaerobic digestion process. Finally, the proposed method is used in the actual anaerobic digestion process. The results show that the overall efficiency values in January, April, May, and June in 2020 are higher than those in other months. At the same time, due to the optimal allocation of slack variables of inputs and undesirable outputs, the efficiency values of other inefficient anaerobic digestion days can be improved.

To document

Abstract

Subtropical forests are important ecosystems globally due to their extensive role in carbon sequestration. Extreme climate events are known to introduce disturbances in the ecosystem that cause long-term changes in carbon balance and radiation reflectance. However, how these ecosystem function changes contribute to global warming in terms of radiative forcing (RF), especially in the years following a disturbance, still needs to be investigated. We studied an extreme snow event that occurred in a subtropical evergreen broadleaved forest in south-western China in 2015 and used 9 years (2011–2019) of net ecosystem CO2 exchange (NEE) and surface albedo (α) data to investigate the effect of the event on the ecosystem RF changes. In the year of the disturbance, leaf area index (LAI) declined by 40% and α by 32%. The annual NEE was −718 ± 128 g C m−2 as a sink in the pre-disturbance years (2011–2014), but after the event, the sink strength dropped significantly by 76% (2015). Both the vegetation, indicated by LAI, and α recovered to pre-disturbance levels in the fourth post-disturbance year (2018). However, the NEE recovery lagged and occurred a year later in 2019, suggesting a more severe and lasting impact on the ecosystem carbon balance. Overall, the extreme event caused a positive (warming effect) net RF which was predominantly caused by changes in α (90%–93%) rather than those in NEE. This result suggests that, compared to the climate effect caused by forest carbon sequestration changes, the climate effect of α alterations can be more sensitive to vegetation damage induced by natural disturbances. Moreover, this study demonstrates the important role of vegetation recovery in driving canopy reflectance and ecosystem carbon balance during the post-disturbance period, which determines the ecosystem feedbacks to the climate change.

To document

Abstract

With large area of primary tropical rainforest converted into rubber (Hevea brasiliensis) plantation in Southeast Asia, it is necessary to examine the change in soil CO2 and CH4 emissions, and their underlying drivers in tropical rainforest (TRF) and rubber plantation. In TRF and RP in Xishuangbanna Southwest China, we measured the soil CO2 , CH4 , temperature, and water content once each week from 2003 to 2008, and twice weeks in 2013 and 2014. Additionally, the concentrations of soil carbon (C) and nitrogen (N) fractions from 2013 to 2014 were observed. Inputs of litter and live, dead, decomposed fine roots dynamics were also included. TRF transplanted to RP did not change significantly the annual soil CO2 emissions (TRF, 359 ± 91 and RP 352 ± 41 mg CO2 m−2 h−1) but decreased soil CH4 uptake significantly (TRF, −0.11 ± 0.18 mg CH4 m−2 h−1) RP, −0.020 ± 0.087 mg CH4 m−2 h−1). The most important influence on soil CO2 and CH4 emissions in the RP was the leaf area index and soil water content, respectively, whereas the soil water content, soil temperature, and dead fine roots were the most important factors in the TRF. Variations in the soil CO2 and CH4 caused by land-use transition were individually explained by soil temperature and fine root growth and decomposition, respectively. The results show that land-use change varied the soil CH4 and CO2 emission dynamics and drivers by the variation of soil environmental and plant's factors.

To document

Abstract

Premise Wetland plants regularly experience physiological stresses resulting from inundation; however, plant responses to the interacting effects of water level and inundation duration are not fully understood. Methods We conducted a mesocosm experiment on two wetland species, sawgrass (Cladium jamaicense) and muhly grass (Muhlenbergia filipes), that co-dominate many freshwater wetlands in the Florida Everglades. We tracked photosynthesis, respiration, and growth at water levels of −10 (control), 10 (shallow), and 35 cm (deep) with reference to soil surface over 6 months. Results The response of photosynthesis to inundation was nonlinear. Specifically, photosynthetic capacity (Amax) declined by 25% in sawgrass and by 70% in muhly grass after 1–2 months of inundation. After 4 months, Amax of muhly grass in the deep-water treatment declined to near zero. Inundated sawgrass maintained similar leaf respiration and growth rates as the control, whereas inundated muhly grass suppressed both respiration and growth. At the end of the experiment, sawgrass had similar nonstructural carbohydrate pools in all treatments. By contrast, muhly grass in the deep-water treatment had largely depleted sugar reserves but maintained a similar starch pool as the control, which is critical for post-stress recovery. Conclusions Overall, the two species exhibited nonlinear and contrasting patterns of carbon uptake and use under inundation stress, which ultimately defines their strategies of surviving regularly flooded habitats. The results suggest that a future scenario with more intensive inundation, due to the water management and climate change, may weaken the dominance of muhly grass in many freshwater wetlands of the Everglades.

To document

Abstract

How aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared them to net ecosystem CO2 exchange (NEE) and ecosystem respiration (Reco) rates within calcareous freshwater wetlands in Everglades National Park. We continuously recorded 30-min measurements of dissolved oxygen (DO), water level, water temperature (Twater), and photosynthetically active radiation (PAR). These measurements were coupled with ecosystem CO2 fluxes over 5 years (2012–2016) in a long-hydroperiod peat-rich, freshwater marsh and a short-hydroperiod, freshwater marl prairie. Daily net aquatic primary productivity (NAPP) rates indicated both wetlands were generally net heterotrophic. Gross aquatic primary productivity (GAPP) ranged from 0 to − 6.3 g C m−2 day−1 and aquatic respiration (RAq) from 0 to 6.13 g C m−2 day−1. Nonlinear interactions between water level, Twater, and GAPP and RAq resulted in high variability in NAPP that contributed to NEE. Net aquatic primary productivity accounted for 4–5% of the deviance explained in NEE rates. With respect to the flux magnitude, daily NAPP was a greater proportion of daily NEE at the long-hydroperiod site (mean = 95%) compared to the short-hydroperiod site (mean = 64%). Although we have confirmed the significant contribution of NAPP to NEE in both long- and short-hydroperiod freshwater wetlands, the decoupling of the aquatic and ecosystem fluxes could largely depend on emergent vegetation, the carbonate cycle, and the lateral C flux.