Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

Abstract

Deliverable 2.5. This report contributes to the EJP SOIL roadmap for climate-smart sustainable agricultural soil management and research by identifying current policy targets and realizations and setting soil service aspirational goals by 2050 at the regional/national (Chapter 2) and European scale (Chapter 3). At both scales, the report is based on a desk study of current agricultural soil related policies, followed by a stakeholder consultation. Twenty countries/regions have contributed to the regional/national analyses and 347 different stakeholders have provided their views on soil policy. The policy analysis demonstrates that large differences exist between the number of policy targets per soil challenge. In general, the soil challenge ‘Maintaining/increasing soil organic carbon’ can be considered as the most important soil challenge taking into account both the policies of the participating countries and of the EU level. This soil challenge not only has (one of) the largest share(s) of quantitative and qualitative targets, but also has a large share of the targets for which an indicator and monitoring is in progress or existing. At the EU level, ‘Avoiding contamination’ is also particularly high addressed in policy documents. In the participating countries, other very important soil challenges in policy are ‘Enhance nutrient retention/use efficiency’, ‘Avoid soil erosion’ and ‘Avoid soil contamination’. These soil challenges comprise a large share of soil- and agricultural soil specific targets. However, despite the large number of policy targets, identified by the participating EJP SOIL countries, there is still a shared need for appropriate clear (quantified) policy targets with a specific time horizon, well-defined indicators and a monitoring systems. Similar results are found at the EU level. Policy targets addressing soil challenges are mostly not expressed in quantitative terms and indicators for monitoring policy targets with references to soil challenges were identified for less than half of the cases. From the stakeholder consultations, it becomes clear that for all soil challenges there is still a way to go before future aspirational goals will be met. Generally, when averaging between all countries, the gap between current policy targets and realizations is for most soil challenges considered between large and halfway in reaching the current policy targets and for most soil challenges current policy targets are regarded almost- to- far from being futureproof. In the prioritization of soil challenges, stakeholders at the regional/country and European level, clearly marked maintaining/increasing SOC as the most relevant soil challenge in the upcoming decades. The stakeholders explain the key role of maintaining/increasing soil organic carbon through the multiple interactions with other soil challenges and for climate change mitigation. At the EU level, the second highest ranked prioritization is soil sealing, due to its irreversible nature. This is, however, not reflected at the country level, potentially due to a misinterpretation of soil sealing as compaction by part of the stakeholders. At the country level, enhancing soil nutrient retention/use efficiency was ranked 2nd in the prioritization exercise. Generally, there is an urgency for policy updates, because the current policy is considered unable to tackle the prominent soil challenges. In the report, also the soil related management practices to achieve the aspirational goals have been identified, both in the policy analysis and in the stakeholder consultation. The most prominent differences between policy and stakeholders, is in the emphasis on the use of buffer strips and small landscape elements in policy, while measures in this category are less highly ranked by the stakeholders. On the other hand, conservation agriculture, agro-ecological farming, precision agriculture, incorporation ........

To document

Abstract

Increased nutrient and soil losses from agricultural areas into water bodies constitute a global problem. Phosphorus is one of the main nutrients causing eutrophication in surface waters. In arable land, phosphorus losses are closely linked to sediment losses. Therefore, a better understanding of the sediment-runoff processes in agricultural areas is a key to reduce the eutrophication impacts and to implement mitigation measures. The objectives of this study were to identify dominant sediment runoff processes in cultivated grain-dominated catchments in a cold climate. We assessed continuous high-resolution turbidity data, temporal and spatial catchment properties and agricultural management data to describe and get a better understanding of the cause-relationship of sediment transfer in two small agricultural dominated catchments in southern Norway. The concentration-discharge pattern, index of connectivity and agricultural activities were considered with the wider aim to establish a link between field and catchment scale. The results showed that the dominant concentration-discharge pattern was a clockwise concentration-discharge (c-q) hysteresis in both catchments indicating that areas close to or in the stream gave the highest contribution to turbidity. The main driver for turbidity was discharge, though soil water storage capacity, rain intensity and former discharge events also played a role. Intensity of soil tillage and index of connectivity (likelihood of water and particles to be transported to the stream) impacted the c-q hysteresis index. Little vegetation cover and high intensity of soil tillage led to a high hysteresis index, which indicates a quick increase in turbidity following increased discharge. Other links between agricultural management and in stream data were difficult to interpret. The findings of this study provide information about discharge, field operations and vegetational status as drivers for turbidity and about the spatial distribution of sediment sources in two agricultural catchments in a cold climate. The understanding of sediment runoff processes is important, when implementing management actions to combat agricultural emissions to water most efficiently.