Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2023

Abstract

Catastrophic floods have large effect on agricultural land both in short and long term. In this chapter, examples of impact of floods of different size in cold regions with glaziers have been presented. The largest floods occur as combination of heavy rainfall and melting and snow and ice in the mountainous areas. Periods of waterlogging by cold running water resulted in decreased yields, but N-fertilization after the soil no longer was water saturated could reduce the yield loss considerably. Although the floods cause severe erosion and sedimentation, results show that it is possible to find measures for reconstruction of the soils with the same productivity as undamaged soils, while the average result was about 85% of the original productivity.

To document

Abstract

The Arctic is one of the regions most sensitive to global warming, for which climate and environmental proxy archives are largely insufficient. Arctic driftwood provides a unique resource for research into the circumpolar entanglements of terrestrial, coastal and marine factors and processes – past, present, future. Here, first dendrochronological and wood anatomical insights into 639 Arctic driftwood samples are presented. Samples were collected across northern Norway (n =430) and north-western Iceland (n =209) in 2022. The overall potentials and limitations of Arctic driftwood to improve tree-ring chronologies from the boreal forest, and to reconstruct changes in sea ice extent and ocean current dynamics are discussed. Finally, the role driftwood has possibly played for Arctic settlements in the past hundreds of years is examined.

To document

Abstract

Pyrolysis is a valid thermos-chemical process of energy production that produces biochar from potentially harmful biomasses. This study aims to investigate the pyrolytic conversion of olive mill solid residues (OMSR) into biochar, with the aim of characterizing this product towards applications for soil improvement and soil C sequestration. Production parameters of OMSR-biochar (OB) and physico-chemical characteristics were analyzed and compared with published data to assess the potential of OB to serve as a soil amendment and soil C sequestration method. The slow pyrolysis of OMSR at 450° leads to a good proportion between produced products (fuels liquid and gas, and solid), and generates about the 35% of OB. In turn, this product reveals the absence of phytotoxicity, the presence of exchangeable surface cations, structure, particle size distribution and external surface groups suitable for agricultural uses, and high C content with a potential long lasting in soil. The physico-chemical characteristics of OB reported here suggest that OB could be used for improving soils and increasing C sequestration in a sustainable way.

To document

Abstract

Numerical models are crucial to understand and/or predict past and future soil organic carbon dynamics. For those models aiming at prediction, validation is a critical step to gain confidence in projections. With a comprehensive review of ~250 models, we assess how models are validated depending on their objectives and features, discuss how validation of predictive models can be improved. We find a critical lack of independent validation using observed time series. Conducting such validations should be a priority to improve the model reliability. Approximately 60% of the models we analysed are not designed for predictions, but rather for conceptual understanding of soil processes. These models provide important insights by identifying key processes and alternative formalisms that can be relevant for predictive models. We argue that combining independent validation based on observed time series and improved information flow between predictive and conceptual models will increase reliability in predictions.

To document

Abstract

Phosphorus is a building block for all life and therefore plays an essential role in food production. Currently, large amounts of phosphorus enter the Norwegian food system from abroad in the form of mineral fertilizer, feedstuff, food, as well as micro-ingredients for animal feed, mainly in salmon farming. However, only a small fraction of this phosphorus ends up as food for humans, while the largest part accumulates in soil and water systems. This inefficiency entails two challenges: 1. Phosphorus supply is critical. Phosphate rock, the primary source of phosphorus for fertilizer and micro-ingredient production, is a limited resource that is highly concentrated in a few countries. Over 80% of global phosphate rock reserves are found in only 5 countries, and ~70% are located in Morocco and Morocco-occupied Western Sahara. The high concentration renders many countries vulnerable to geopolitical and economic instabilities and threatens food safety. The EU has therefore included phosphate rock on its list of Critical Raw Materials. 2. The accumulation of phosphorus in water systems can lead to eutrophication and dead zones, threatening fish stocks and other aquatic life. The high phosphorus concentration in soils due to overfertilization over long periods of time increases the danger of losses to water systems by runoff, further exacerbating the eutrophication risk. A more circular use of phosphorus could simultaneously reduce supply and pollution risks. This is particularly relevant in Norway, where the government has an ambition to increase salmon and trout production from currently 1,5 to 5 million tons by 2050. Achieving a circular phosphorus economy is a complex task: (i) The land- and the sea-based food systems are increasingly interlinked, for example through agricultural production of fish feed or the application of fish sludge on agricultural land. (ii) The Norwegian phosphorus cycle is increasingly interlinked with that of other countries as trade flows along the entire food supply chain are growing. (iii) Phosphorus fertilizers, both primary and recycled, are often contaminated with heavy metals such as cadmium, uranium, and zinc, which tend to accumulate in soils. Cleaning the phosphorus cycle is therefore vital for soil fertility and human health. This report is based on the MIND-P project, which studied the Norwegian phosphorus cycle for both agriculture and aquaculture at a farm-by-farm basis and explored options for increasing circularity. The project identified farm-level and structural barriers to managing phosphorus resources more effectively. We propose four fundamental strategies to overcome these barriers: 1. Develop and maintain a national nutrient accounting. 2. Minimize phosphorus losses and accumulations at farm level. 3. Establish infrastructures for capturing, processing, trade, and use of manure and fish sludge to produce high-quality recycled fertilizers that are tailored to the needs of the users in Norway and abroad. 4. Adopt a regulatory framework to promote a market for recycled fertilizer. The strategies proposed here were developed with the support of an Advisory Panel consisting of representatives from government, industry, industry associations, and NGOs in an online and two physical workshops conducted in 2022.

To document

Abstract

The gut microbiota plays an important role in host health and disease. Our understanding of the fish microbiota lags far behind our knowledge of that of humans and other mammals. Nevertheless, research has highlighted the importance of the microbiota in the health, performance, and various physiological functions of fish. The microbiota has been studied in various fish species, including model animals, economic fish, and wild fish species. The composition of the fish microbiota depends on host selection, diet, and environmental factors. The intestinal microbiota affects the nutritional metabolism, immunity, and disease resistance of the fish host, while the host regulates the intestinal microbiota in a reciprocal way through both immune and non-immune factors. Improved and novel gnotobiotic fish models have been developed, which are important for the mechanistic study of host-microbiota interactions in fish. In this review, we discuss recent progress in fish microbiota research. We describe various aspects of this research, including both studies on fish microbiota variations and fundamental research extending our knowledge of host–microbiota interaction in fish. Perspectives on how fish microbiota research may benefit fish health and industrial sustainability are also discussed.

To document

Abstract

The aim of the project is to evaluate and assess measures in lawn care management and at the same time to combine new techniques and alternative products to control diseases such as snow mold (Microdochium nivale) and dollar spots (Sclerotinia homoeocarpa) without or with a greatly reduced use of pesticides. Therefore, the lawn research group of the NIBIO (Norwegian Institute for Bioeconomy Research) started a project on Integrated Pest Management (IPM) with a focus on the most important fungal diseases and insect pests on golf turf. The project is supported by STERF (Scandinavian Turf and Environmental Research Foundation) and the R&A (The Royal and Ancient Golf Club of St. Andrews) as main sponsors, as well as by the German Golf Association, the Netherlands Golf Federation sponsor, the Botaniska Analysgruppen Sweden and the Danish Environmental Protection Agency. The current project aims is to develop new findings with regard to the increasing challenges in dealing with the above-mentioned pests. The two questions to check are: (1) the effectiveness of the “rolling” of greens (dollar spot treatment) and the effectivity of UV-C exposure (snow mold prevention). For this reason, two different attempts were made on a putting green at the golf course Osnabrueck (Bissendorf-Jeggen).