Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2012

Abstract

Pathogen challenge of tree sapwood induces the formation of reaction zones with antimicrobial properties such as elevated pH and cation content. Many fungi lower substrate pH by secreting oxalic acid, its conjugate base oxalate being a reductant as well as a chelating agent for cations. To examine the role of oxalic acid in pathogenicity of white-rot fungi, we conducted spatial quantification of oxalate, transcript levels of related fungal genes, and element concentrations in heartwood of Norway spruce challenged naturally by Heterobasidion parviporum. In the pathogen-compromised reaction zone, upregulation of an oxaloacetase gene generating oxalic acid coincided with oxalate and cation accumulation and presence of calcium oxalate crystals. The colonized inner heartwood showed trace amounts of oxalate. Moreover, fungal exposure to the reaction zone under laboratory conditions induced oxaloacetase and oxalate accumulation, whereas heartwood induced a decarboxylase gene involved in degradation of oxalate. The excess level of cations in defense xylem inactivates pathogen-secreted oxalate through precipitation and, presumably, only after cation neutralization can oxalic acid participate in lignocellulose degradation. This necessitates enhanced production of oxalic acid by H. parviporum. This study is the first to determine the true influence of white-rot fungi on oxalate crystal formation in tree xylem.

2011

To document

Abstract

The trans-border brown bear population of Pasvik-Inari-Pechenga (Norway-Finland-Russia) has been monitored using genetic analyses of feces collection since 2005. In addition in 2007, hair traps were systematically placed out in the area to collect hairs for genetic analysis, to more precisely determine the minimum numbers of bears. In 2011, we repeated this hair trap study, using the exact same methodology as in 2007, to make a direct comparison of the results from the two years. Brown bear DNA was detected in 68 of 88 hair samples (77%) obtained from hair traps in 2011 and for 56 of these samples, a complete DNA profile could be determined. We identified 20 different bears in 2011, 12 females and 8 males. Only one bear was found in more than one country (Norway and Russia). We detected 11 bears in Norway, 7 bears in Finland and 3 bears in Russia in 2011. Four of these 20 bears were previously unknown, all four from Finland. A comparison of the results from 2007 and 2011 showed that we detected fewer bears in hair traps in 2011 (20 bears) than in 2007 (24 bears), but this modest difference may be coincidental. However, we observed a large drop in the yield of hair samples in the traps in 2011 compared to 2007 (88 versus 196 samples). This observation may be suggestive of some reduced activity of bears within the study area in 2011. In addition, only five (21%) of the bears caught in hair traps in 2007 were recaptured in 2011, which indicates a substantial turnover of individuals and may indicate that more frequent hair trapping monitoring would be beneficial to reliably track changes in the population. Additional samples (mainly scats) collected opportunistically in the field within the Russian and Finnish parts of the study area in 2011 detected four male bears in the Finnish part that had not been detected by hair traps. No additional samples from Norway were included to this study and any comparisons between the hair-trapping and opportunistic sampling at this point remains difficult. However, the results indicate that both methods combined are currently the most feasible methods to monitor brown bear numbers in an area.

Abstract

Nutrient losses from agricultural catchments in Norway have been monitored since 1992 as part of the Norwegian Agricultural Environmental Monitoring Programme (JOVA). The catchments are at locations which are chosen to represent typical Norwegian agricultural systems such as the production of cereals, grass/livestock and vegetables. Losses are reported annually.