Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2016

To document

Abstract

Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar’s effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar’s contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.

To document

Abstract

Assessing the vulnerability of groundwater to adverse effects of human impacts is one of the most important problems in applied hydrogeology. At the same time, many of the widespread vulnerability assessment methods do not provide physically meaningful and operational indicators of vulnerability. Therefore, this review summarizes (i) different methods used for intrinsic vulnerability assessment and (ii) methods for different groundwater systems. It particularly focuses on (iii) timescale methods of water flow as an appropriate tool and (iv) provides a discussion on the challenges in applying these methods. The use of such physically meaningful indices based on timescales is indispensable for groundwater resources management.

Abstract

This report contains all the monitoring data collected in the course of three years, from 2013 to May 2016. The deposits had high contents of organic material and high water content before monitoring started. Data showed minimum temperatures close to 0-2°C under winter conditions and maximum temperatures at 14°C during the period from May to September in 2013. In 2014 the minimum temperature increased to 6-7°C and the maximum temperature increased to 17-18°C. Data recorded in 2015 showed minimum temperature 7-9°C and maximum temperature at 16-19°C. The average and median values calculated in 2013 were about 11°C, 13°C in 2014 and 14°C in 2015. High soil moisture was found in all layers, and fluctuated with precipitation. This increased more frequently in 2014 and 2015 under periods with high precipitation. This high precipitation frequency the last two years and infiltration of roof water has decreased the redox potential to more anoxic conditions, which is positive for the preservation of the archaeological remains. The previous status report II, written in 2015, informs that the redox sensor was malfunction because of the great curve drop in 2014 for sensors in layer 2 and 3. In 2015, the redox sensors all show more stable conditions of -400, -311 to -11 mV in layers 2, 3 and 4.

To document

Abstract

This paper presents archaeological observations and results of palaeoecological and geochemical analyses of archaeological deposits from two rural sites in northernmost Norway. These are combined with climate data and the first period of continuous monitoring of soil temperature, moisture and redox potential in sections. This data constitutes the basic research material for evaluations of conservation state and preservation conditions. The data has been collected in collaboration between the partners of a cross disciplinary project. This is an important Norwegian research initiative on monitoring of rural archaeological deposits and the results have consequences for heritage management of a large number of sites from all periods. Palaeoecological analyses and redox measurements have revealed ongoing decay that might not otherwise have been detected. Decay studies indicate that both site types may be at risk with the predicted climate change. Some mitigating acts are suggested.

To document

Abstract

Medieval Trondheim is located on the eastern part of Nidarneset, a small peninsula formed by the river plain at the mouth of the River Nid on the southern shore of Trondheimsfjord. The topographic conditions for medieval Trondheim differ from those of the other Norwegian medieval towns (notably Bergen, Oslo, and Tønsberg), and the protected, historic part of Trondheim contains anthropogenic sediments which lie entirely within an unsaturated environment. A large proportion of these sediments contain wood and other types of organic material. The thickness of the anthropogenic sediments varies greatly from more than 4 m to less than 0.5 m, and they overlie well-drained alluvial sands and gravels. The Directorate for Cultural Heritage (Riksantikvaren) and the Norwegian Institute for Cultural Heritage Research (NIKU) have different roles in the management of cultural heritage sites. However, they cooperate in developing sustainable management and a scientific approach to research, as well as finding practical solutions aimed at securing stable preservation conditions for anthropogenic sediments that are vulnerable and sensitive to environmental changes, both chemical and mechanical. In this paper we present results from environmental investigations conducted in 2007 and 2012 at a location in the central part of medieval Trondheim where an in situ preservation project has been established on the site of new construction work. The project is cross-interdisciplinary, combining archaeological retrieval methods with the sampling and analysis of soil chemical parameters and the monitoring of present basic parameters such as temperature, moisture and redox potential. The monitoring has been ongoing since the beginning of 2013 and will continue until 2017.