Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2022

To document

Abstract

The major event that hit Europe in summer 2021 reminds society that floods are recurrent and among the costliest and deadliest natural hazards. The long-term flood risk management (FRM) efforts preferring sole technical measures to prevent and mitigate floods have shown to be not sufficiently effective and sensitive to the environment. Nature-Based Solutions (NBS) mark a recent paradigm shift of FRM towards solutions that use nature-derived features, processes and management options to improve water retention and mitigate floods. Yet, the empirical evidence on the effects of NBS across various settings remains fragmented and their implementation faces a series of institutional barriers. In this paper, we adopt a community expert perspective drawing upon LAND4FLOOD Natural flood retention on private land network (https://www.land4flood.eu) in order to identify a set of barriers and their cascading and compound interactions relevant to individual NBS. The experts identified a comprehensive set of 17 barriers affecting the implementation of 12 groups of NBS in both urban and rural settings in five European regional environmental domains (i.e., Boreal, Atlantic, Continental, Alpine-Carpathian, and Mediterranean). Based on the results, we define avenues for further research, connecting hydrology and soil science, on the one hand, and land use planning, social geography and economics, on the other. Our suggestions ultimately call for a transdisciplinary turn in the research of NBS in FRM.

To document

Abstract

Soils form the basis for agricultural production and other ecosystem services, and soil management should aim at improving their quality and resilience. Within the SoilCare project, the concept of soil-improving cropping systems (SICS) was developed as a holistic approach to facilitate the adoption of soil management that is sustainable and profitable. SICS selected with stakeholders were monitored and evaluated for environmental, sociocultural, and economic effects to determine profitability and sustainability. Monitoring results were upscaled to European level using modelling and Europe-wide data, and a mapping tool was developed to assist in selection of appropriate SICS across Europe. Furthermore, biophysical, sociocultural, economic, and policy reasons for (non)adoption were studied. Results at the plot/farm scale showed a small positive impact of SICS on environment and soil, no effect on sustainability, and small negative impacts on economic and sociocultural dimensions. Modelling showed that different SICS had different impacts across Europe—indicating the importance of understanding local dynamics in Europe-wide assessments. Work on adoption of SICS confirmed the role economic considerations play in the uptake of SICS, but also highlighted social factors such as trust. The project’s results underlined the need for policies that support and enable a transition to more sustainable agricultural practices in a coherent way.

To document

Abstract

Planted filters are often used to remove pesticides from runoff water. However, the detailed fate of pesticides in the planted filters still remains elusive. This hampers an accurate assessment of environmental risks of the pesticides related to their fate and thereby development of proper mitigation strategies. In addition, a test system for the chemical fate analysis including plants and in particular for planted filters is not well established yet. Therefore, we developed a microcosm test to simulate the fate of pesticide in planted filters, and applied 2-13C,15N-glyphosate as a model pesticide. The fate of 2-13C,15N-glyphosate in the planted microcosms over 31 day-incubation period was balanced and compared with that in the unplanted microcosms. The mass balance of 2-13C,15N-glyphosate turnover included 13C mineralization, degradation products, and the 13C and 15N incorporation into the rhizosphere microbial biomass and plants. We observed high removal of glyphosate (> 88%) from the water mainly due to adsorption on gravel in both microcosms. More glyphosate was degraded in the planted microcosms with 4.1% of 13C being mineralized, 1.5% of 13C and 3.8% of 15N being incorporated into microbial biomass. In the unplanted microcosms, 1.1% of 13C from 2-13C,15N-glyphosate was mineralized, and only 0.2% of 13C and 0.1% of 15N were assimilated into microbial biomass. The total recovery of 13C and 15N was 81% and 85% in planted microcosms, and 91% and 93% in unplanted counterparts, respectively. The microcosm test was thus proven to be feasible for mass balance assessments of the fate of non-volatile chemicals in planted filters. The results of such studies could help better manage and design planted filters for pesticide removal.

To document

Abstract

Chapter 8 provides a comprehensive review of literature pertaining to agroecological (AE) farming approaches/practices and knowledge driven from stakeholders’ and scientific studies. The review identifies the major drivers, barriers, gaps, and opportunities of AE practices in the context of African farming systems. The chapter presents the best combinations of AE practices as alternative approaches to the current unsustainable farming practices. Experiences from Zambia and other countries where selected AE practices are being implemented by farmers with the support of diverse stakeholders are shared in the chapter. Further, key ecological, social, and economic indicators developed in the countries are also discussed. The chapter analyses how the AE practices contribute to the reduction of GHG emissions and at the same time address the UN Sustainable Development Goals (SDGs), e.g., SDG 2 (food and nutrition security), SDG 12 (sustainable food production and consumption), SDG 13 (climate action), and SDG 15 (life on land).

To document

Abstract

Chapter 6 provides a summary of research findings from the case studies in India that showed significant benefits of another climate-smart rice system, namely the direct seeded rice (DSR), which shows positive outcomes compared to puddled transplanted rice in terms of (i) higher water productivity, (ii) reduction in labour and production costs, and (iii) lower methane emissions. However, there are some challenges for adopting DSR which include poor weed control, need for specific water and nutrient management, availability of suitable varieties for DSR, increased damage by soil pathogens and nutrient disorders, especially N and micronutrients. Possible solutions to overcome these challenges that will make it easier for adoption by farmers will be analysed in this chapter. Field data/evidence from India and other previous studies under both dry and wet conditions were presented to support the solutions. The options for scaling up DSR combined by need-based farmer trainings, accessibility to good quality seeds, availability and use of drum seeders and selective herbicides were discussed.

To document

Abstract

In Chapter 2, the authors focus on the importance of precision-based soil and nutrient management practices tested on rice farms in the eastern part of India and the potential for reducing GHG emissions. This is highly relevant for countries such as India, Vietnam, Myanmar, Bangladesh, and Thailand with large areas under rice production, where the use of excess amounts of fertilizer and chemicals, especially nitrogen fertilizer, is a serious problem for the environment and health of people. The chapter shows the importance and benefits from the use of tools ranging from the simple leaf colour chart to innovative digital tools and their relevance to improve nutrient use efficiency. The chapter towards the end provides guidelines/models and policy recommendations for upscaling precision soil and nutrient management in rice systems and other related food crops.

To document

Abstract

Hydrologic models are indispensable tools for water resource planning and management. Accurate model predictions are critical for better water resource development and management decisions. Single-site model calibration and calibrating a watershed model at the watershed outlet are commonly adopted strategies. In the present study, for the first time, a multi-site calibration for the Soil and Water Assessment Tool (SWAT) in the Kelani River Basin with a catchment area of about 2340 km2 was carried out. The SWAT model was calibrated at five streamflow gauging stations, Deraniyagala, Kithulgala, Holombuwa, Glencourse, and Hanwella, with drainage areas of 183, 383, 155, 1463, and 1782 km2, respectively, using three distinct calibration strategies. These strategies were, utilizing (1) data from downstream and (2) data from upstream, both categorized here as single-site calibration, and (3) data from downstream and upstream (multi-site calibration). Considering the performance of the model during the calibration period, which was examined using the statistical indices R2 and NSE, the model performance at Holombuwa was upgraded from “good” to “very good” with the multi-site calibration technique. Simultaneously, the PBIAS at Hanwella and Kithulgala improved from “unsatisfactory” to “satisfactory” and “satisfactory” to “good” model performance, while the RSR improved from “good” to “very good” model performance at Deraniyagala, indicating the innovative multi-site calibration approach demonstrated a significant improvement in the results. Hence, this study will provide valuable insights for hydrological modelers to determine the most appropriate calibration strategy for their large-scale watersheds, considering the spatial variation of the watershed characteristics, thereby reducing the uncertainty in hydrologic predictions.

Abstract

This chapter presents an overview of the current climate crisis, major sources of GHG emissions, and impacts from the agriculture sector contributing to global warming. Further, the chapter discusses the challenges in reducing GHG emissions from the agriculture sector. Major changes in the agriculture sector would be required if the impact due to climate change is to be limited to 1.5°C target. According to the authors, overcoming the challenges to reduce GHG emissions in the agriculture sector will require specific technological, investment, and policy solutions suitable for different agro-ecological and socio-economic settings. These solutions must be designed and implemented at different scales, both for developed and developing countries, for large- and small-scale farms, and should be sustainable, environmentally, socially, and economically. The chapter discusses the major challenges of the current farming systems, followed by a review of design approaches and pathways for a transition towards sustainable CNRFS. Towards the end, the chapter provides a brief outline of the book and justification.

To document

Abstract

How can agroecological research methods effectively engage smallholder farmers, who provide over half of the world’s food supply, and whose farm management activities have significant impacts on biodiversity and ecosystem services? This question is highly relevant in Malawi where the research took place, but in other low-income countries in Africa with mostly agrarian populations, in which multi-scalar processes drive high food insecurity, alongside declining biodiversity, worsening land degradation and climate change. We analyse an innovative transdisciplinary agroecological approach that attempts to bridge the science-practice-policy gap by examining the potential of agro-ecological measures to enhance functional biodiversity and ecosystem services. This study involves a longitudinal, case-control and participatory research design in a region where thousands of farmers have experimented with agroecological practices, e.g., legume intercropping, composting, and botanical sprays. Innovative transdisciplinary agroecological research activities involved farmer participatory research, ecological monitoring and field experiments, social science methods (both qualitative and quantitative), participatory methodologies (public participatory Geographic Information Systems - PPGIS and scenario planning and testing) and stakeholder engagement to foster science-policy linkages. We discuss the theoretical and methodological implications of this novel transdisciplinary and participatory approach about pluralism, decolonial and translational ecological research to foster sustainability and climate resilience of tropical farming systems.