Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2007

To document

Abstract

In some parts of the world, the soil selenium (Se) content is too low to ensure the Se level recommended for human or animal consumption in the crops produced. In order to secure a desired concentration of Se in crops, Se has been applied as mineral fertilizer to agricultural fields. Since only a minor part of the inorganic Se applied is utilized by plants and small increases in Se concentrations in, e.g., drinking water, may be toxic, the method is somewhat controversial. As an alternative to Se-enriched mineral fertilizer, different seafood-processing wastes have been examined as a source for Se in crop production. Both in greenhouse pot experiments and field trials the Se in seafood waste was not plant-available during the first growing season. There was no significant difference between the Se concentration in wheat growing in soil without added Se and in soil receiving Se from seafood waste in amounts ranging from 0.9 to 9 g ha(-1). Neither was any residual effect of Se in seafood waste seen during a second year growth period. Thus, seafood-processing waste cannot be regarded as a potential source of Se in crop production. Possible mobilization of formerly applied Se, as seafood-processing waste or Se enriched mineral fertilizer due to changes in soil redox conditions were examined in a leaching experiment. The mobility of formerly applied Se was generally very low, but the results indicated that under permanently wet soil conditions leaching of Se may occur in plant dormant periods in soils with low organic matter content and high pH.

To document

Abstract

The objective of the present study was to investigate the influence of soil organic matter content and pH on plant availability of both inorganic and organic selenium (Se) fertilisers. Further, the risk of Se leaching after application of inorganic Se fertiliser was evaluated. A new interpretation of an older field study at different sites in Southern Norway showed that organic C was correlated with grain Se concentration in wheat, barley and oats, explaining up to 60% of the variation in Se concentration. Pot experiments with a peat soil, a loam soil and a peat/loam soil mixture were conducted for the present study at a range of pH values between pH 5 and 7. Below pH 6, Se uptake from added Se fertiliser was higher in the soil types with high organic matter content than in the loam. The opposite occurred at a soil pH above 6, where Se uptake was higher in the loam than in the peat soil. A simple leaching experiment after one growing season confirmed the findings of the pot experiments that Se availability in the loam soil with a relatively low organic matter content increased with increasing pH, whereas it decreased in the peat soil. Neither Se yeast, nor pure Se methionine, used as organic Se fertiliser, resulted in any significant uptake of Se when added at concentrations similar to the inorganic Se applications.

Abstract

In parts of the world, Se availability in the soil is so low that Se contents in the crops produced there are well below recommended values. Since the difference between Se essentiality and toxicity is very small, the addition of Se via fertiliser is controversial. Therefore, it is important to utilise the Se added in the best possible way. The objective of the present study was to investigate the influence of soil organic matter on the one hand, and addition of organic material (slurry) on the other hand on plant availability of selenium (Se) in soil. Pot experiments with the Se addition in the form of selenate were conducted with a peat, a loam and a peat/loam mixture at a range of pH values between 5 and 6.8. Se uptake from added Se fertiliser was higher in the soil types with high organic matter content than in the loam at pH 6 and below. The opposite occurred at a soil pH above 6.4, where Se uptake was higher in the loam than in the peat. In a pot experiment using only peat and loam at two pH levels, cattle slurry added together with selenate was found to increase the Se concentration in grain at the higher pH. At the lower pH there was no significant effect of slurry on Se concentration in grain. Application of slurry also increased the residual effect of Se that had been applied to the loam in the preceding growing season. In the peat, no residual effect of Se was found either with or without the addition of slurry.

2006

Abstract

The concentrations of carbon monoxide (CO) and other gases were measured in the emissions from solid waste degradation under aerobic and anaerobic conditions during laboratory and field investigations. The emissions were measured as room temperature headspace gas concentrations in reactors of 1, 30, and 150 L, as well as sucked gas concentrations from windrow composting piles and a biocell, under field conditions. The aerobic composting laboratory experiments consisted of treatments with and without lime. The CO concentrations measured during anaerobic conditions varied from 0 to 3000 ppm, the average being 23 ppm, increasing to 133 ppm when methane (CH4) concentrations were low. The mean/maximum CO concentrations during the aerobic degradation in the 2-L reactor were 101/194 ppm without lime, 486/2022 ppm with lime, and 275/980 ppm in the 150-L reactors. The presence of CO during the aerobic composting followed a rapid decline in O2 concentrations Significantly higher CO concentrations were obtained when the aerobic degradation was amended with lime, probably because of a more extreme depletion of oxygen. The mean/maximum CO concentrations under field conditions during aerobic composting were 95/1000 ppm. The CO concentrations from the anaerobic biocell varied from 20 to 160 ppm. The hydrogen sulfide concentrations reached almost 1200 ppm during the anaerobic degradation and 67 ppm during the composting experiments. There is a positive correlation between the CO and hydrogen sulfide concentrations measured during the anaerobic degradation experiments.

To document

Abstract

The aim of the present investigation was to study the effect of manure on retention of selenium (Se) in soil. Addition of cattle manure in combination with selenite and selenate reduced the adsorption of both anions to a loam soil in a batch experiment. The results were explained by the content of low-molecular-weight organic acids in the manure which compete with Se for the sorption sites. In a pot experiment with loam and peat soils and with two pH levels within each soil, cattle slurry added together with selenate was found to increase the Se concentration in grain at the highest pH level (6.1 and 6.8 for the loam and peat, respectively). At a lower pH (5.4 and 6.0 for the loam and peat, respectively) there was no significant effect of slurry on Se concentration in grain. Application of slurry also increased the residual effect of Se applied to the loam soil in the preceding growing season. In the peat soil, no residual effect of Se was found either with or without the addition of slurry.