Hopp til hovedinnholdet

Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2018

To document

Abstract

This study represents a large-scale investigation into iodine contents in three commercially important and edible seaweed species from the North Atlantic: the brown algae Saccharina latissima and Alaria esculenta, and the red alga Palmaria palmata. Variability among and within species were explored in terms of temporal and spatial variations in addition to biomass source. Mean iodine concentration in bulk seaweed biomass was speciesspecific: Saccharina > Alaria > Palmaria. Iodine contents of Saccharina biomass were similar between years and seasons, but varied significantly between sampling locations and biomass sources. In Alaria and Palmaria, none of the independent variables examined contributed significantly to the small variations observed. Our data suggest that all three species are rich sources of iodine, and only 32, 283, or 2149 mg dry weight of unprocessed dry biomass of Saccharina, Alaria, or Palmaria, respectively, meets the recommended daily intake levels for most healthy humans.

To document

Abstract

The red seaweed Palmaria palmata has previously been reported to have high protein content high in essential amino acids. To extract the proteins a rigid cell wall consisting mainly of β-(1→4)/β-(1→3)-D-xylans must be disrupted. Different methods have been used to overcome this problem along with various methods used for protein evaluation. In this study, the effect of enzymatic pre-treatment on protein extraction was examined. Both enzymatic hydrolysis with xylanase and protease were tested. The amino acid content of the fractions was examined after extraction. The amino acid composition was similar to what has previously been reported; P. palmata was high in essential amino acids. Accordingly, a nitrogen-to-protein conversion factor was calculated for each fraction individually and protein results were compared with calculation using the proximate 6.25 conversion factor. The nitrogen-to-protein conversion factor varied between fractions but all factors were significantly lower than the popularly used 6.25 indicating that this conversion factor for processed P. palmata is effectively and considerably overestimating the protein content. Enzymatic pre-treatment with xylanase resulted in enhanced amino acid content and successful protein extraction. Enzymatic hydrolysis using protease resulted in higher protein content in the liquid extract compared to hydrolysis with xylanase, due to the release of proteins, peptides, and amino acids. Therefore, hydrolysis with protease is not suitable to extract proteins from P. palmata with the method described within this study but might be an optimal method to examine the bioactivity by extracting the protein hydrolysates. However, the result from this study confirm that hydrolysis with xylanase is a feasible choice to extract proteins of good quality from P. palmata.

To document

Abstract

Seaweeds are increasingly used in European cuisines due to their nutritional value. Many algal constituents, such as polyphenols, are important antioxidants and thus considered beneficial to humans. However, many seaweed species can accumulate heavy metals and exhibit potential health risks upon ingestion. We investigated temporal and spatial variations in polyphenol and heavy metal (As, Cd, Hg, Pb) concentrations of three edible seaweed species. The brown algae Saccharina latissima and Alaria esculenta, and the red alga Palmaria palmata were sourced from natural populations and aquaculture in the NE Atlantic and processed as bulk biomass mimicking industrial scales. The mean polyphenol content was species-specific (Alaria > Saccharina > Palmaria), and highest in winter (for Alaria and Saccharina) and spring (for Palmaria); inter-annual and spatial variations were marginal. Heavy metal concentrations varied between species and depended on collection site, but seasonal variations were minimal. Our data suggest that all three species are good sources of antioxidants, and the heavy metal concentrations are below the upper limits set by the French recommendation and the EU Commission Regulation on contaminants in foodstuffs. A health risk assessment indicated that consumption of these seaweed species poses a low risk for humans with regard to heavy metals. However, an EU-wide regulation on maximal concentration of heavy metals in seaweeds should be established.

To document

Abstract

The potential of seaweeds as alternative protein source was investigated in relation to their amino acid (AA) profiles and the ruminal and total tract digestibility of these AAs. Three red (Mastocarpus stellatus, Palmaria palmata, and Porphyra sp.), four brown (Alaria esculenta, Laminaria digitata, Pelvetia canaliculata, and Saccharina latissima), and two green (Cladophora rupestris. and Ulva sp.) seaweed species were used in this study (hereafter, referred to by Genus name only). All seaweeds were collected in Bodø, Northern Norway, during Spring and Autumn in 2014 and 2015, except Ulva, which was only sampled in Autumn of both years, and Saccharina which was not sampled in Spring 2014. All the samples were studied for AA concentration. Six species (Cladophora, Laminaria, Mastocarpus, Palmaria, Porphyra and Ulva) were selected for the more resource demanding in situ study. Species and season interactively affected the content of total AA in crude protein in different seaweeds investigated (P=0.02), with values ranging from 67.2 for Laminaria in Spring to 90.2 gAA/16 g N for Ulva in Autumn. in situ AA degradability was also species specific. The seasonality of total AA in crude protein of different seaweed species mostly did not affect their ruminal degradability, except for alanine, while species and season interactively affected proline’s ruminal degradability. The total tract degradability showed that for Laminaria and Mastocarpus, methionine followed by leucine, isoleucine, histidine and lysine, were protected against rumen degradation. These protections seemed to be acid labile allowing digestion in the lower digestive tract. However, due to high indigestible fractions, these two seaweeds provided low amounts of AA to the intestines. Total tract AA digestibility values were the highest for Porphyra (906 g/kg) followed by Palmaria (843 g/kg) and the green seaweeds. To conclude, Laminaria and Mastocarpus are beneficial sources for bypass protein supply as they contain AA protected against rumen degradation. Based on their amount of AA and their AA degradability, Porphyra, followed by Palmaria and the green seaweeds (Ulva and Cladophora) can be considered as relevant sources of protein for ruminants.

2017

To document

Abstract

Main conclusion Evergreen plants are more vulnerable than grasses and birch to snow and temperature variability in the sub-Arctic. Most Arctic climate impact studies focus on single factors, such as summer warming, while ecosystems are exposed to changes in all seasons. Through a combination of field and laboratory manipulations, we compared physiological and growth responses of dominant sub-Arctic plant types to midwinter warming events (6 °C for 7 days) in combination with freezing, simulated snow thaw and nitrogen additions. We aimed to identify if different plant types showed consistent physiological, cellular, growth and mortality responses to these abiotic stressors. Evergreen dwarf shrubs and tree seedlings showed higher mortality (40–100%) following extreme winter warming events than Betula pubescens tree seedlings and grasses (0–27%). All species had growth reductions following exposure to − 20 °C, but not all species suffered from − 10 °C irrespective of other treatments. Winter warming followed by − 20 °C resulted in the greatest mortality and was strongest among evergreen plants. Snow removal reduced the biomass for most species and this was exacerbated by subsequent freezing. Nitrogen increased the growth of B. pubescens and grasses, but not the evergreens, and interaction effects with the warming, freezing and snow treatments were minor and few. Physiological activity during the winter warming and freezing treatments was inconsistent with growth and mortality rates across the plants types. However, changes in the membrane fatty acids were associated with reduced mortality of grasses. Sub-Arctic plant communities may become dominated by grasses and deciduous plants if winter snowpack diminishes and plants are exposed to greater temperature variability in the near future. C-repeat binding factor · Fatty acids · Frost · Grass · Multiple stresses · Shrub · Snow

To document

Abstract

We conducted a series of diagnostic fitness response experiments on the coccolithophore, Emiliania huxleyi, isolated from the Subtropical Convergence east of New Zealand. Dose response curves (i.e., physiological rate vs. environmental driver) were constructed for growth, photosynthetic, and calcification rates of E. huxleyi relative to each of five environmental drivers (nitrate concentration, phosphate concentration, irradiance, temperature, and pCO2). The relative importance of each environmental driver on E. huxleyi rate processes was then ranked using a semi-quantitative approach by comparing the percentage change caused by each environmental driver on the measured physiological metrics under the projected conditions for the year 2100, relative to those for the present day, in the Subtropical Convergence. The results reveal that the projected future decrease in nitrate concentration (33%) played the most important role in controlling the growth, photosynthetic and calcification rates of E. huxleyi, whereas raising pCO2 to 75 Pa (750 ppm) decreased the calcification : photosynthesis ratios to the greatest degree. These findings reveal that other environmental drivers may be equally or more influential than CO2 in regulating the physiological responses of E. huxleyi, and provide new diagnostic information to better understand how this ecologically important species will respond to the projected future changes to multiple environmental drivers.